Philosophiae Doctor - PhD (Physics)
Permanent URI for this collection
Browse
Browsing by Title
Now showing 1 - 20 of 65
Results Per Page
Sort Options
Item Application of vertically aligned arrays of metal-oxide nanowires in heterojunction photovoltaics(University of the Western Cape, 2020) Ladan, Muhammad Bello; Cummings, Franscious; Muller, TheophillusThe commercial need to improve the performance of low-cost organic solar cells has led to the idea for this research. The study discusses the synthesis of one dimensional TiO2 and ZnO nanowire arrays synthesised using a hydrothermal autoclave method and their application in bulk heterojunction inverted organic solar cells. Previous literature has shown that the precise manipulation, positioning and assembly of 1D nanostructures remain one of the greatest challenges in the field of nanotechnology, with much of the difficulty arising primarily from the lack of size and scale of the materials as well as the inability to visualise the nanostructures. In particular, one dimensional metal-oxides such as TiO2, ZnO and Fe2O3 have emerged as attractive alternatives to traditional semiconductor structures such as Si and GaAs as they are simple and inexpensive to manufacture, with research showing that application of ZnO nano-cones yield efficiencies of 8.4%, which is very attractive given the scope that exists in optimising the metal-oxide architecture. Much is still to be learned from the precise structural features of these materials and their influence on device performance. In this regard, this work largely focuses on this aspect of metal-oxide nanowires prior their application in organic solar cells.Item A case study of university students' experiences of introductory physics drawn from their approaches to problem solving(University of the Western Cape, 2001) Alant, Busisiwe Precious; Linder, Cendric; Marshall, DeliaThis thesis explores the experience of leaming physics through a particular medium: problem-solving, which is seen by many educators as the primary medium in which physics is learnt at university. Situating itself within two theoretical perspectives: phenomenography and actor-network theory, the dissertation explores the variation in the ways of experiencing introductory physics leaming through problem-solving. phenomenography, which is the main theoretical framework, places emphasis on the variation of experience of phenomenon at a supra-individual level. Leaming is regarded as relational, which means that the act of leaming is apprehended (in terms of how the learning is done as well as what is leant) in the relation between the leamer and the phenomenon. Rather than regard the content of physics learning as the phenomenon, the study proposes the process of learning physics through problem, solving as the phenomenon under investigation. The thesis draws on insights from actor-network theory, particularly with regard to the spatiality of leaming. Learning is seen as a function of enrolment. Fifteen students were interviewed on introductory physics problems encountered in four end-of-module tests. The data were analyzed on the basis of strategy - conceived as "moments,' of problem-solving, as well as the factors (intentional and contextual) that could be seen to influence the strategy adopted. Two qualitatively distinct problem-solving strategies were identified, derived from the relative presence of reflective awareness. Further, factors influencing the strategies were identified and found to be indicative of two qualitatively distinct ways in which the students focused on the problems - either on problem content (the physics concepts) or on problem requirement (the formal requirements of the task within the test setting). These findings are seen to constitute the structural aspect of the students' experience of physics learning through problem solving. With regard to the referential aspect of the experience, the study derives two overall meanings that the students attached to their experience of physics learning through problem-solving, namely physics leaming as "reconstituting understanding', and physics learning as, confirming convention". It is argued that the variations identified in the strategies employed by the students, in the ways they focus on problems, in their perception of the problem-solving settings, in the meanings they attach to physics learning through problem-solving - call for a framework of learning that takes account of spatiotemporal intricacy. The notion of conceptual understanding in the learning of physics should be informed by the specific demands of the medium of problem-solving through which physics is learnt at undergraduate levelItem Chemical pressure-induced transition of the magnetic ground state from ferromagnetic to antiferromagnetic order in CeCuGe and DyCuIn alloys(University of the Western Cape, 2023) Altayeb, Anas Alamin Hassan; Tchoula Tchokont´e, MoiseRare-earth intermetallic compounds continue to attract considerable attention, due to their fundamental importance in understanding physical properties and potential applications based on a variety of phenomena. The ternary intermetallic compounds of the RTX series (R = rare-earth element, T = 3d / 5d transition element, X = p-block element) in particular, were studied extensively for the past two decades. A number of interesting magnetic and electrical properties of practical and fundamental importance, were found in different compounds of the RTX series, including giant and large magnetocaloric effects and magnetoresistivity, antiferromagnetic (AFM) to ferromagnetic (FM) order transitions and rich magnetic transition phase diagrams. Most of these properties are related to the interaction between the R-4f (localized) electronic states and other (itinerant) electronic states in the electronic system. Several experiments have provided evidence for magnetic ground state switching between FM and AFM ordering, driven by pressure or chemical substitution in d and f electron compounds. The methods used to investigate the magnetic phase transitions could be divided into macroscopic and microscopic ones. The macroscopic method relied on the temperature dependences of magnetization, magnetic susceptibility and specific heat measurements while the microscopic method relied on neutron diffraction and Mössbauer effect.Item Clustering studies of radio-selected galaxies(University of the Western Cape, 2011) Passmoor, Sean Stuart; Cress, Catherine; Dept. of Physics; Faculty of ScienceWe investigate the clustering of HI-selected galaxies in the ALFALFA survey and compare results with those obtained for HIPASS. Measurements of the angular correlation function and the inferred 3D-clustering are compared with results from direct spatial-correlation measurements. We are able to measure clustering on smaller angular scales and for galaxies with lower HI masses than was previously possible. We calculate the expected clustering of dark matter using the redshift distributions of HIPASS and ALFALFA and show that the ALFALFA sample is somewhat more anti-biased with respect to dark matter than the HIPASS sample. We are able to conform the validity of the dark matter correlation predictions by performing simulations of the non-linear structure formation. Further we examine how the bias evolves with redshift for radio galaxies detected in the the first survey.Item Cosmological constraints using 2- and 3-point correlations with meerkat, the ska and other surveys(Universty of the Western Cape, 2024) Randrianjanahary, Liantsoa Finaritra; Maartens, RoyWe explore the information from HI power spectra (tree-level and one-loop) in redshift space and bispectrum tree-level models. 21-cm emission from neutral hydrogen is a promising tool for probing the matter distribution in the universe post-reionization. The HI signals contain signatures of the primordial universe and the growth of large-scale structure in the universe. These signatures are typically analyzed via the 2-point correlation function or power spectrum. However, adding the information from the 3-point correlation function or bispectrum will be crucial to exploiting next-generation intensity mapping experiments. Upcoming surveys by SKAO and HIRAX will undertake intensive line-intensity observations, complementing galaxy surveys. This study provides new forecasts on cosmological constraints derived from the combined analysis of the 21cm power spectrum and bispectrum. We use Fisher predictions to examine how useful these surveys might be for constraining cosmological parameters, BAO distance functions, growth function, and what they mean for dynamical dark energy and modified gravity. We account for telescope beam effects, instrumental noise, foreground avoidance, the Alcock-Paczynski effect, and theoretical modeling errors in the correlators. The investigation also includes assessments of 21-cm clustering bias up to the second order.Item Cosmology with next generation radio telescopes(University of the Western Cape, 2019) Witzemann, Amadeus; Santos, Mario; Weltman, Amanda; Clarkson, ChrisThe next generation of radio telescopes will revolutionize cosmology by providing large three-dimensional surveys of the universe. This work presents forecasts using the technique 21cm intensity mapping (IM) combined with results from the cosmic microwave background, or mock data of galaxy surveys. First, we discuss prospects of constraining curvature independently of the dark energy (DE) model, finding that the radio instrument HIRAX will reach percent-level accuracy even when an arbitrary DE equation of state is assumed. This is followed by a study of the potential of the multi-tracer technique to surpass the cosmic variance limit, a crucial method to probe primordial non-Gaussianity and large scale general relativistic e↵ects. Using full sky simulations for the Square Kilometre Array phase 1 (SKA 1 MID) and the Large Synoptic Survey Telescope (LSST), including foregrounds, we demonstrate that the cosmic variance contaminated scenario can be beaten even in the noise free case. Finally, we derive the signal to noise ratio for the cosmic magnification signal from foreground HI intensity maps combined with background galaxy count maps. Instruments like SKA1 MID and HIRAX are highly complementary and well suited for this measurement. Thanks to the powerful design of the planned radio instruments, all results confirm their potential and promise an exciting future for cosmology.Item Coulomb excitation of 66ge(University of Western Cape, 2021) Abrahams, Kenzo; Orce, NicoThe Coulomb excitation of 66Ge has been performed for the rst time using \safe" bombarding energies at the HIE-ISOLDE facility at CERN in July 2017. A particle- coincidence experiment using the MINIBALL array and double-sided silicon detectors has allowed the determination of transitional and diagonal matrix elements in 66Ge, yielding new measurements of the reduced transition probability connecting the ground state, 0+1 , and the rst excited state, 2+1 , or B(E2; 2+1 ! 0+1 ) value, and the spectroscopic quadrupole moment of the 2+1 state, QS (2+1 ). A relatively large B(E2) = 29:4(30) W.u. has been extracted using beam-gated data at forward angles { less sensitive to secondorder e ects { as compared with the adopted value of 16:9(7) W.u., but in closer agreement with modern large-scale shell-model calculations using a variety of e ective interactions and beyond-mean eld calculations presented in the current work.Item Development and study of a Thoron (Rn-220) standard source(University of Western Cape, 2019) Elhag, Elmughera Hussein Salim; Lindsay, R.Thoron Rn-220 is a radioactive gas with a half-life of 55.6 s. It has been identified as a possible health concern in specific places such as monazite processing plants and (rare-earth) mines. The short half-life of Rn-220 makes Rn-220 calibration sources and chambers less common than for the isotope Rn-222. There are many Rn-220 standard sources and chambers that are widely described in the literature and used for different applications and calibration. However, some of these chambers and sources are not easy to set up in typical nuclear environmental laboratories. In this project, we developed a Rn-220 standard source using a thorium nitrate solution (Th(NO3)4.6H2O). The solution was split into a large volume which was used in a Marinelli beaker to characterize its strength using a Hyper Pure Germanium (HPGe) detector, and a smaller volume of around 30 ml which was poured into a small bottle. The Rn-220 is extracted by bubbling air through the solution in the small bottle using an aerator. Gamma rays from the solution were measured simultaneously using a 76.2 mm × 76.2 mm NaI(Tl) detector. The gamma rays were measured for 66 hours. The accumulated spectra were thereafter analysed using an Excel spreadsheet where the counts in the Tl-208(2614 keV) peak were extracted and used to obtain the percentage of Rn-220 pumped out of the solution in the small bottle.Item Disentangling star formation and AGN activity in the GAMA (G23) region(University of the Western Cape, 2021) Cluver, Michelle; Marc, Harris Yao FortuneObservations of galaxies at di↵erent wavelengths have shaped our understanding of their formation and evolution through time. The commonly derived parameters, such as stellar mass and star formation rate (SFR), rely on the assumption that the radiation received is exclusively generated by the stars within the galaxy. This assumption is true for pure star-forming (SF) galaxies, but not in the presence of an active galactic nucleus (AGN). AGNs are structures that also radiate in the full electromagnetic spectrum, inducing additional flux to that emitted by stars. Their small sizes in comparison to the host galaxy (⌧1 %) generally make them invisible in galaxy images. AGNs come in many variations making the most powerful (e.g., quasi-stellar objects) easily identifiable, whereas others with much weaker signatures can be hidden in the total emission from the host. Therefore it is imperative to find accurate methods to separate and study the properties of AGNs versus pure SF galaxies.Item The effects on student knowledge and engagement when using a culturally responsive framework to teach ASTR 101(University of the Western Cape, 2020) Lee, Annette; Holbrook, JaritaThe U.S. has a problem: it is not effectively utilizing all the bright young minds available to its science & engineering workforce. In 2012 the President’s Council of Advisors on Science and Technology (PCAST) reported that a million more STEM professionals in the U.S. workforce were needed over the next decade. PCAST reported that the situation is far worse for underrepresented students, who make up 70% of undergraduate students but only 45% of the STEM degrees. Recent reports suggest women in science and engineering have made small gains, while historically underrepresented ethnic groups (Blacks, Hispanics, American Indians) continue to be significantly underrepresented. The lack of diversity in the U.S. workforce is not reflected in the USA population nor is it reflected in the undergraduate student population. As the U.S. aspires to retain a leadership role in research and development in an increasingly diverse and globally interconnected society, this disparity is unsustainable. What if having more culturally interesting, more culturally responsive STEM classes is a way of increasing the diversity of the science and engineering workforce in the U.S.? This study focuses on a topic that has been generally overlooked by the STEM educational community, but one that is directly relevant to student engagement and learning outcomes: the role of culture as a variable in student learning. This study examines how different pedagogical approaches shape student outcomes in Astronomy 101 courses. In a comparative study two different pedagogical approaches were analyzed using both quantitative and qualitative methods in a semiexperimental nonequivalent group research design. The theories of culturally responsive pedagogy (CRP), active learning theory in STEM, and Indigenous knowledge systems (IKS) ground this approach. The findings of this study show important gains for all students. Underrepresented minority students (URM) in the course with increased culturally responsive pedagogy were exceptionally engaged and learning gains soared. By measure of the concept inventory, the URM students in the course with increased culturally responsive pedagogy outperformed all other students in the study. As the U.S. will have a non-white majority by the year 2045 and diversity in STEM faculty lags there is a need for tangible, evidence-based, culture-based curriculum and pedagogy. There is a problem and based on the evidence found in this study, there is a way to fix it.Item Exploring poly (2, 5) benzimidazole enhanced with carbon nanotubes for space applications(University of the Western Cape, 2023) Fourie, Lionel Fabian; Square, LynndleThis work explores using polymeric materials for space radiation shielding in low-earth orbit. Shielding against radiation is essential on any space mission. Low atomic number materials, such as hydrogen, have shown to be effective in shielding ionising radiation. However, compared to metallic alloys, these materials suer from relatively low mechanical and thermal properties, which limit their application. Aluminium (Al) enjoyed wide use in space applications as a structural and radiation shielding material. However, weight and secondary radiation generation issues have made its use as a shielding material less viable on modern space missions where cost and safety play a crucial role in planning these missions. On modern space missions, conventional shielding materials include Al alloys, high-density polyethylene, and water. The disadvantages include low thermal properties, high atomic numbers, and complex maintenance systems. This lead to exploring other materials that can mitigate some of these drawbacks. A proposed approach to replacing high atomic number metals is deploying hydrogen-rich polymers enhanced with nanofiller materials to form polymer nanocomposites. Poly-mers enhanced with nanofillers can achieve improved physical properties while pro-viding adequate radiation shielding functions at a lower weight with less secondary radiation generation.Item Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process(2010) Lebogang, Kotsedi; Knoesen, Dirk; Madjoe, ReginaldtWhen the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell.A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon.In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity.The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped.A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.Item Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process(University of the Western Cape, 2010) Kotsedi, Lebogang; Knoesen, Dirk; Madjoe, Reginaldt; Dept. of PhysicsWhen the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell. A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon. In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity. The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped. A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.Item Far-infrared-radio relations in clusters and groups at intermediate redshift(University of the Western Cape, 2014) Randriamampandry, Solohery Mampionona; Crawford, Steven; Cress, CatherineIn this thesis, we present a multi-wavelength analysis of star-forming galaxies to shed new light on the evolution of the far-IR-radio relations in intermediate redshift (0.3 < z < 0.6) galaxy clusters and galaxy groups. The far-infrared (far-IR) emission from galaxies is dominated by thermal dust emission. The radio emission at 1.4 GHz is predominantly produced by non-thermal synchrotron radiation. The underlying mechanisms, which drive the far-IR-radio correlation, are believed to arise from massive star formation. A number of studies have investigated the relationship as a function of redshift in the field and have found no evolution out to at least z _ 2, however few works have been done in galaxy clusters. In nearby clusters, the median logarithmic ratio of the far-IR to radio luminosity is qFIR = 2.07_0.74, which is lower than the value found in the field, and there is an indication of an enhancement of radio emission relative to the far-IR emission. Understanding the properties of the far-IR-radio correlation in a sample of distant and massive cluster and groups plays an important role in understanding the physical processes in these systems. We have derived total infrared luminosities for a sample of cluster, group, and field galaxies through an empirical relation based on Spitzer MIPS 24 _m photometry. The radio flux densities were measured from deep Very Large Array 1.4 GHz radio continuum observations. We have studied the properties of the far-IR-radio correlation of galaxies at intermediate redshift clusters by comparing the relationship of these galaxies to that of low redshift clusters. We have also examined the properties of the galaxies showing radio excess to determine the extent that galaxy type or environment may explain the radio excess in galaxy clusters. We find that the ratio of far-IR to radio luminosity for galaxies in an intermediate redshift cluster to be qFIR = 1.72_0.63. This value is comparable to that measured in low redshift clusters. A higher fraction of galaxies in clusters show an excess in their radio fluxes when compared to low redshift clusters, and corroborates previous evidence of a cluster enhancement of radio excess sources at this earlier epoch as well. We have also investigated the properties of the far-IR-radio correlation for a sample of galaxy groups in the COSMOS field. We find a lower percentage of radio-excess sources in groups as compared to clusters. This provides preliminary evidence that the number of radioexcess sources may depend on galaxy environment. We also find that a larger fraction of radio-excess sources in clusters are red sequence galaxies.Item Galaxy evolution and cosmology studies using luminous red galaxies(University of the Western Cape, 2014) Ratsimbazafy, Ando; Cress, Catherine; Crawford, SteveThere have been a number of attempts to measure the expansion rate of the Universe using age-dating of Luminous Red Galaxies (LRGs). Assuming that stars in LRGs form at the same time, age-dating of two populations of LRGs at different redshifts can provide an estimate of the time different associated with the corresponding redshift interval (dz/dt). This gives a direct estimate of the Hubble parameter H (z) at the average redshift of the two populations. In this thesis, we explore the validity of this method by using two different sets of data. Firstly, we select a homogeneous sample of passively evolving galaxies over 0.10 < z < 0.40 from the Sloan Digital Sky Survey Data Release Seven (SDSS-DR7) catalogue by applying a refined criteria, which is based on absolute magnitude. Secondly, we carry out series of observations on the Southern African Large Telescope (SALT) to obtain spectra of LRGs at two narrow redshift ranges z ' 0.40 and z ' 0.55 in order to calculate the Hubble parameter H(z) at z ' 0.47. We utilise two distinct methods of age-dating including the use of absorption Lick index lines and full spectral fitting on high signal-to-noise galaxy spectra from our sample. By establishing the age-redshift relation of the quiescent, passively evolving galaxies from SDSS, we obtain three improved new observational H(z) data points which are H(z) = 76.8 5.3 km s1Mpc1 at z ' 0.28, H(z) = 78.5 6.8 km s1Mpc1 at z ' 0.30 and H(z) = 86.3 7.6 km s1Mpc1 at z ' 0.32 respectively. We also find another H(z) value of 105 39 km s1Mpc1 at z ' 0.47 when age-dating LRGs observed with SALT. Combining all 4 data points with another 25 data points in the literature, we place better constraints on cosmological models and find the matter density parameter to be constrained by m = 0:32+0:05 0:06 and the Hubble constant to be H0 =68.5 2.4. These results are very consistent with other studies. Through this work, we are able to demonstrate that the cosmic chronometers approach can potentially be used to explore the evolution of the Universe.Item Galaxy Evolution and Cosmology using Supercomputer Simulations by Daniel Cunnama(University of the Western Cape, 2013) Cunnama, DanielNumerical simulations play a crucial role in testing current cosmological models of the formation and evolution of the cosmic structure observed in the modern Universe. Simulations of the collapse of both baryonic and non-baryonic matter under the influence of gravity have yielded important results in our understanding of the large scale structure of the Universe. In addition to the underlying large scale structure, simulations which include gas dynamics can give us valuable insight into, and allow us to make testable predictions on, the nature and distribution of baryonic matter on a wide range of scales. In this work we give an overview of cosmological simulations and the methods employed in the solution of many body problems. We then present three projects focusing on scales ranging from individual galaxies to the cosmic web connecting clusters of galaxies thereby demonstrating the potential and diversity of numerical simulations in the fields of cosmology and astrophysics. We firstly investigate the environmental dependance of neutral hydrogen in the intergalactic medium by utilising high resolution cosmological hydrodynamic simulations in Chapter 3. We find that the extent of the neutral hydrogen radial profile is dependant on both the environment of the galaxy and its classification within the group ie. whether it is a central or satellite galaxy. We investigate whether this effect could arise from ram pressure forces exerted on the galaxies and find good agreement between galaxies experiencing high ram pressure forces and those with a low neutral hydrogen content. In Chapter 4 we investigate the velocity–shape alignment of clusters in a dark matter only simulation and the effect of such an alignment on measurements of the kinetic Sunyaev–Zeldovich (kSZ) effect. We find an alignment not only exists but can lead to an enhancement in the kSZ signal of up to 60% when the cluster is orientated along the line-of-sight. Finally we attempt to identify shocked gas in clusters and filaments using intermediate resolution cosmological hydrodynamic simulations in Chapter 5 with a view to predicting the synchrotron emission from these areas, something that may be detectable with the Square Kilometer Array.Item Gamma spectroscopy and lifetime measurements in the doubly-odd 194tl nucleus, revealing possible chiral symmetry breaking(University of the Western Cape, 2013) Masiteng, Paulus Lukisi; Lawrie, E. A.; Lindsay, R.In the first experiment high spin states in 194Tl, excited through the 181Ta (18O, 5n) heavyion fusion evaporation reaction were studied using the AFRODITE array at iThemba LABS. The γ-γ coincidences, RAD ratios and linear polarization measurements were carried out and the previously known level scheme of 194Tl was significantly extended. A total of five rotational bands four of which are new were observed. A pair of rotational bands associated with the πh9/2 ⊗ νi−1 13/2 configuration at lower spins and with the πh9/2 ⊗ νi−3 13/2 configuration at higher spins was found and interpreted as the first possible chiral bands followed above the band crossing. The two 4-quasiparticle bands show exceptionally close near-degeneracy in the excitation energies. Furthermore close similarity is also found in their alignments and B(M1)/B(E2) reduced transition probability ratios. In the second experiment lifetimes in 194Tl were measured using the DSAM technique with the excited states in this nucleus populated through the 181Ta (18O, 5n) reaction. A total of 25 lifetimes and 30 reduced transition probabilities of magnetic dipole B(M1) and electric quadrupole B(E2) have been evaluated. Furthermore B(M1) and B(E2) reduced transition probabilities in Bands 1 and 4, which have been regarded as chiral candidates, were found to be close to each other and reveals strong splitting along spin values. This further supports the proposed chiral nature of these two bands.Item HI intensity mapping: Impact of primary beam effects(University of the Western Cape, 2023) Matshawule, Siyambonga Donald; Santos, Mario G.Neutral hydrogen (HI) intensity mapping surveys with upcoming and future radio telescopes such as the MeerKAT, a precursor to the Square Kilometre Array Observatory (SKAO) MID telescope, have great potential for constraining cosmology, particularly in the post-reionization Universe provided that e ective cleaning methods are available to separate the strong foregrounds from the cosmological signal. The application of cleaning methods is usually conducted under the assumption of simplistic primary beam models. In this thesis, I simulate a single-dish wide-area survey with MeerKAT characteristics, and test foreground subtraction with a realistic model for the primary beam that contains a non-trivial frequency dependence. I also probe the impact of strong point sources on the cleaning. To conduct this evaluation, point source maps from a much more realistic full-sky point source catalogue are included as part of the foregrounds present in the sky model.Item Hot-wire chemical vapour deposition of nanocrystalline silicon and silicon nitride : growth mechanisms and filament stability(University of the Western Cape, 2012) Oliphant, Clive Justin; Arendse, C. J.; Knoesen, D.; Muller, T. F. G.Nanocrystalline silicon (nc-Si:H) is an interesting type of silicon with superior electrical properties that are more stable compared to amorphous silicon (a-Si:H). Silicon nitride (SiNₓ) thin films are currently the dielectric widely applied in the microelectronics industry and are also effective antireflective and passivating layers for multicrystalline silicon solar cells. Research into the synthesis and characterization of nc-Si:H and SiNₓ thin films is vital from a renewable energy aspect. In this thesis we investigated the film growth mechanisms and the filament stability during the hot-wire chemical vapour deposition (HWCVD) of nc-Si:H and SiNₓ thin films. During the HWCVD of nc-Si:H, electron backscatter diffraction (EBSD) revealed that the tantalum (Ta) filament aged to consists of a recrystallized Ta-core with Ta-rich silicides at the hotter centre regions and Si-rich Ta-silicides at the cooler ends nearer to the electrical contacts. The growth of nc-Si:H by HWCVD is controlled by surface reactions before and beyond the transition from a-Si:H to nc-Si:H. During the transition, the diffusion of hydrogen (H) within the film is proposed to be the reaction controlling step. The deposition pressure influenced the structural, mechanical and optical properties of nc-Si:H films mostly when the film thickness is below 250 nm. The film stress, optical band gap, refractive index and crystalline volume fraction approached similar values at longer deposition times irrespective of the deposition pressure. Filament degradation occurred during the HWCVD of SiNₓ thin films from low total flow rate SiH₄ / ammonia (NH₃) / H₂ gas mixture. Similar to the HWCVD of nc-Si:H, the Ta-core recrystallized and silicides formed around the perimeter. However, Tanitrides formed within the filament bulk. The extent of nitride and silicide formation, porosity and cracks were all enhanced at the hotter centre regions, where filament failure eventually occurred. We also applied HWCVD to deposit transparent, low reflective and hydrogen containing SiNₓ thin films at total gas flow rates less than 31 sccm with NH₃ flow rates as low as 3 sccm. Fluctuations within the SiNₓ thin film growth rates were attributed to the depletion of growth species (Si, N, and H) from the ambient and their incorporation within the filament during its degradation.Item Hybrid lead halide perovskite thin films and solar cells by chemical vapour deposition(University of the Western Cape, 2021) Ngqoloda, Siphelo; Arendse, C.JThe organic-inorganic hybrid perovskites such as methyl ammonium lead iodide (MAPbI3) or mixed halide MAPbI3-xClx (x is usually very small) have emerged as an interesting class of semiconductor materials for their application in photovoltaic (PV) and other semiconducting devices. A fast rise in PCE of this material observed in just under a decade from 3.8% in 2009 to over 25.2% recently is highly unique compared to other established PV technologies such as c-Si, GaAs, and CdTe. The high efficiency of perovskites solar cells has been attributed to its excellent optical and electronic properties. Perovskites thin film solar cells are usually deposited via spin coating, vacuum thermal evaporation, and chemical vapour deposition (CVD).