HerMES: Candidate gravitationally lensed galaxies and lensing statistics at submillimeter wavelengths

Abstract

Gravitational lensing increases the angular size and integrated flux of affected sources. It is exploited to investigate the mass distribution of the foreground lensing structures and the properties of the background lensed galaxies (see reviews by Bartelmann 2010; Treu 2010). The magnification provided by gravitational lensing makes it an effective tool for identifying and studying intrinsically faint and typically distant galaxies (e.g., Stark et al. 2007; Richard et al. 2008, 2011). The flux boost from lensing yields an improved detection, and the associated spatial enhancement increases the ability to investigate the internal structure of distant galaxies to levels otherwise unattainable with the current generation of instrumentation (e.g., Riechers et al. 2008; Swinbank et al. 2010, 2011; Gladders et al. 2012). Furthermore, gravitational lensing probes the total mass of the foreground deflectors, including the relative content of dark and luminous mass. In combination with dynamical studies, lensing mass reconstruction allows one to obtain the density profile of the dark matter in individual lensing galaxies down to ~10 kpc scales (e.g., Miralda-Escude 1995; Dalal & Kochanek 2002; Metcalf & Zhao 2002; Rusin & Kochanek 2005; Treu & Koopmans 2004).

Description

Keywords

Gravitational lensing, Submillimeter wavelengths, Galaxies, Cosmology, Cosmological parameters

Citation

Wardlow, J.L., et al. (2013). HerMES: Candidate gravitationally lensed galaxies and lensing statistics at submillimeter wavelengths. The Astrophysical Journal, 762(59): 1-28