Department of Chemistry
Permanent URI for this community
Browse
Browsing by Title
Now showing 1 - 20 of 649
Results Per Page
Sort Options
Item 1D NiHPO4 nanotubes prepared using dissolution equilibrium as bifunctional electrocatalyst for high-efficiency water splitting(Journal of Power Sources, 2021) Ji, Shan; Wang, Zining; Wu, YutaiIn this work, one-dimensional NiHPO4 nanotubes are successfully fabricated on nickel foam by hydrothermal reaction, in which a dissolution equilibrium between phosphates is controlled by tuning the proportion of the mixed solvent and amounts of KOH. As the dissolution equilibrium is broken, the morphology of NiHPO4 transfers from solid nanowires to hollow nanotubes. The resulting 1D NiHPO4 nanotubes exhibit good electrocatalytic activity and stability in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Notably, a water-splitting voltage of 1.62 V at a current density of 10 mA cm 2 is obtained in an electrolyzer setup assembled using 1D NiHPO4 nanotubes as cathode and anode, demonstrating NiHPO4 nanotubes are promising catalysts for overall water splitting. Moreover, the revealed mechanism of forming tube morphology can be extended to fabricate other metal phosphates with hollow structures.Item 2-Arylnaphthoquinone analogues: Potential anti-TB and pro-apoptotic agents(Green, I. R. et al. (2011). 2-Arylnaphthoquinone analogues: Potential anti-TB and pro-apoptotic agents. ARKIVOC, (x), 192-212. https://doi.org/10.3998/ark.5550190.0012.a16, 2011) Green, Ivan R; Sagar, Sunil; Swigelaar, WendellA useful library of substituted 2-arylnaphthoquinones prepared by reaction between the corresponding bromonaphthoquinones and arylboronic acids via Suzuki-Miyaura protocols has been established. Conversion of some of the products into new analogues was effected. The bisnaphthoquinone disospyrin 1 comprises two 7-methyljuglone units linked between C2 and C6. 1,2 Antimycobacterial activity studies performed on diospyrin 1 alerted the scientific community to the potential importance of this natural product3 which was soon followed by its first published synthesis by Yoshida and Mori in the same year.4 Subsequent studies, which included the synthesis and evaluation of related analogues of diospyrin 1 demonstrated the potential of this basic scaffold to be considered as an integral aspect for good antimycrobacterial activity.Item 4-(Dimethylamino)pyridinium chlorosulfonate: A new ionic liquid exhibiting chlorosulfonic acid action as monoprotic Brönsted acid and no sulfonating reagent(Journal of Molecular Liquids, 2021) Titinchi, SalamMany papers considered chlorosulfonic acid as a sulfonating and sulfating agent, whereas our previous work and a few reports showed it acts as a monoprotic Brönsted acid. Therefore, in the present work, we decided to respond to this question by investigating the reaction between chlorosulfonic acid and DMAP. First, a new ionic liquid viz. 4-dimethylaminopyridinium chlorosulfonate was obtained, which its chemical structure was elucidated using different spectroscopic techniques. Another derivative, 4-dimethylaminopyridinium hydrogen sulfate, was also synthesized, which showed a similar NMR pattern. The NMR spectra analyses of reactants, the new ionic liquid, and 4 dimethylaminopyridinium hydrogen sulfate support the formation of 4-dimethylaminopyridinium chlorosulfonate. Therefore, the formation of N-sulfonic acid-4-dimethylaminopyridinium chloride or 4-dimethylaminopyridinium sulfate and the presence of an excess of chlorosulfonic acid and sulfuric acid were ruled out based on the spectroscopic results. Finally, the new ionic liquid's thermal behavior and thermal stability were investigated, and a possible mechanism was presented for its degradation based on a TGA/DTA analysis.Item 4-Oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives as NMDA receptor- and VGCC blockers with neuroprotective potential(MDPI, 2020) Egunlusi, Ayodeji O; Omoruyi, Sylvester I; Malan, Sarel FThe impact of excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptor overactivation and voltage gated calcium channel (VGCC) depolarization is prominent among the postulated processes involved in the development of neurodegenerative disorders. NGP1-01, a polycyclic amine, has been shown to be neuroprotective through modulation of the NMDA receptor and VGCC, and attenuation of MPP+-induced neurotoxicity. Recently, we reported on the calcium modulating effects of tricycloundecene derivatives, structurally similar to NGP1-01, on the NMDA receptor and VGCC of synaptoneurosomes. In the present study, we investigated novel 4-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives for their cytotoxicity, neuroprotective effects via attenuation of MPP+-induced neurotoxicity and calcium influx inhibition abilities through the NMDA receptor and VGCC using neuroblastoma SH-SY5Y cells. All compounds, in general, showed low or no toxicity against neuroblastoma cells at 10–50 µM concentrations. At 10 µM, all compounds significantly attenuated MPP+-induced neurotoxicity as evident by the enhancement in cell viability between 23.05 ± 3.45% to 53.56 ± 9.29%. In comparison to known active compounds, the derivatives demonstrated mono or dual calcium modulating effect on the NMDA receptor and/or VGCC. Molecular docking studies using the NMDA receptor protein structure indicated that the compounds are able to bind in a comparable manner to the crystallographic pose of MK-801 inside the NMDA ion channel. The biological characteristics, together with results from in silico studies, suggest that these compounds could act as neuroprotective agents for the purpose of halting or slowing down the degenerative processes in neuronal cells.Item Abundance of no3 derived organo-nitrates and their importance in the atmosphere(MPDI, 2021) Foulds, Amy; Khan, M. Anwar H.; Shallcross, Dudley E.The chemistry of the nitrate radical and its contribution to organo-nitrate formation in the troposphere has been investigated using a mesoscale 3-D chemistry and transport model, WRFChem-CRI. The model-measurement comparisons of NO2 , ozone and night-time N2O5 mixing ratios show good agreement supporting the model’s ability to represent nitrate (NO3 ) chemistry reasonably. Thirty-nine organo-nitrates in the model are formed exclusively either from the reaction of RO2 with NO or by the reaction of NO3 with alkenes. Temporal analysis highlighted a significant contribution of NO3 -derived organo-nitrates, even during daylight hours. Night-time NO3 -derived organo-nitrates were found to be 3-fold higher than that in the daytime. The reactivity of daytime NO3 could be more competitive than previously thought, with losses due to reaction with VOCs (and subsequent organo-nitrate formation) likely to be just as important as photolysis. This has highlighted the significance of NO3 in daytime organo-nitrate formation, with potential implications for air quality, climate and human health. Estimated atmospheric lifetimes of organo-nitrates showed that the organo-nitrates act as NOx reservoirs, with particularly short-lived species impacting on air quality as contributors to downwind ozone formation.Item Active neutralisation and amelioration of acid mine drainage with fly ash(University of the Western Cape, 2009) Surender, Damini; Petrik, Leslie; Faculty of ScienceFly ash and AMD samples were characterised by standard analytical methods for selection of the test materials. Active treatment by means of mixing fly ash with AMD in beakers and a large tank at pre-determined ratios have shown that fly ash is capable of neutralising AMD and increasing the pH beyond neutral values, which optimises the removal of heavy metals and ions. The trend was: the more fly ash added the quicker was the reaction time and higher the pH values achieved. Iron was reduced by as much 99 % in beaker scale experiments via Fe(OH)3 precipitation at pH values >4.0. A 99 % decrease in aluminium concentration was observed which was attributed to the precipitation of primarily gibbsite and various other mineral phases at pH values >5.5. As the pH increases, sulphate is adsorbed via Fe(OH)3 and gypsum precipitation at elevated pH. Sulphate attenuation with fly ash was excellent, achieving 98 % attenuation with beaker scale experiments and 1:1 fly ash:AMD ratio. Sulphate attenuation with fly ash was comparable to membrane and ion exchange systems and exceeded the performance of limestone treatment. Except for the larger volumes of fly ash needed to neutralise the AMD, fly ash proved to be a feasible and cost efficient alternative to limestone treatment. Fly ash produced competing results to limestone concerning acidity removal and sulphate attenuation. The comparison highlighted the advantages of utilising fly ash in comparison to limestone and demonstrated its cost effectiveness. The results of this study have shown that fly ash could be successfully applied for the neutralisation of acid mine drainage (AMD) and effectively attenuate the sulphate load in the treated water. The critical parameters to this technology are the variations of chemical composition and mineralogy of fly ash, which could influence the pH, contact time of the neutralisation reaction, and the same is true if the AMD quality varies.Item Active neutralisation and amelioration of acid mine drainage with fly ash(University of the Western Cape, 2009) Surender, Damini; Petrik, LeslieDue to the constraints being placed on water resources and a drive for major industries to recycle waste water, improved and cheaper water treatment technologies are being investigated. During mining, pyrite (FeS2), a mineral naturally occurring in the earth’s structure, becomes oxidised when exposed to oxygen and water, resulting in the release of hydrogen ions, sulphate ions and metal cations. Coal mining operations, located in one of the largest coalfields in the country, in Mpumalanga province, is a major contributor to the generation of acid mine drainage (AMD) and is estimated to produce 360 Ml/d after closure of the entire Mpumalanga Coalfields. Commonly applied chemically treatment processes for AMD involve the use of limestone to neutralise the AMD, however elevated sulphate concentrations persist in the neutralised water. Membrane and ion exchange technology are more successful in attenuating sulphate in AMD; however, they are often complex and have exorbitant capital and operating costs. Universally, fly ash has been applied for the treatment of AMD primarily in passive treatment systems. Passive treatment technologies require little or no operation and maintenance e.g. constructed wetlands and anoxic limestone drains. However, with specific reference to AMD treatment, passive treatment systems require long retention times and greater space as well as provide uncertain treatment efficiencies. Recent research has demonstrated the potential to apply fly ash in active treatment systems for AMD treatment and amelioration. Active treatment technologies make use of some chemical addition or advanced technology e.g. membrane technologies and ion exchange resins. Whilst active treatment technologies are often more expensive than passive treatment systems, active treatment occurs at a faster rate and treatment efficiencies are more controllable and effective. This study investigated the potential of fly ash to actively neutralise and ameliorate or improve the quality of AMD at beaker and large scale with special attention given to sulphate attenuation. The results of the investigation were compared to data of state-of-the-art treatment technologies, obtained from literature. These included chemical treatment, membrane treatment, ion exchange and biological treatment systems. A comparative study was conducted to ascertain the feasibility of fly ash versus the commonly used limestone treatment technology. Fly ash and AMD samples were characterised by standard analytical methods for selection of the test materials. Active treatment by means of mixing fly ash with AMD in beakers and a large tank at pre-determined ratios have shown that fly ash is capable of neutralising AMD and increasing the pH beyond neutral values, which optimises the removal of heavy metals and ions. The trend was: the more fly ash added the quicker was the reaction time and higher the pH values achieved. Iron was reduced by as much 99 % in beaker scale experiments via Fe(OH)3 precipitation at pH values >4.0. A 99 % decrease in aluminium concentration was observed which was attributed to the precipitation of primarily gibbsite and various other mineral phases at pH values >5.5. As the pH increases, sulphate is adsorbed via Fe(OH)3 and gypsum precipitation at elevated pH. Sulphate attenuation with fly ash was excellent, achieving 98 % attenuation with beaker scale experiments and 1:1 fly ash:AMD ratio. Sulphate attenuation with fly ash was comparable to membrane and ion exchange systems and exceeded the performance of limestone treatment. Except for the larger volumes of fly ash needed to neutralise the AMD, fly ash proved to be a feasible and cost efficient alternative to limestone treatment. Fly ash produced competing results to limestone concerning acidity removal and sulphate attenuation. The comparison highlighted the advantages of utilising fly ash in comparison to limestone and demonstrated its cost effectiveness. The results of this study have shown that fly ash could be successfully applied for the neutralisation of acid mine drainage (AMD) and effectively attenuate the sulphate load in the treated water. The critical parameters to this technology are the variations of chemical composition and mineralogy of fly ash, which could influence the pH, contact time of the neutralisation reaction, and the same is true if the AMD quality varies.Item Actuation behaviour of a derivatized pyrrole accordion type polymer(ESG, 2014) Ward, Meryck; Botha, Shanielle; Iwuoha, Emmanuel I.; Baker, PriscillaA monomer (Phenazine-2,3-diimino(pyrrole-2-yl)–PDP) derived from the condensation reaction between 2,3-diaminophenazine and a pyrrole derivative has been synthesized as a hinge molecule in the design of a zig-zag polymer. The monomer was polymerized both chemically and electrochemically in order to produce the polymer material, phenazine-2,3-diimino(pyrrole-2-yl (PPDP). During electrochemical polymerization the system was doped using 1,4-napthaquinone sulphonic acid (NQSA) and polyvinylsulfonic acid (PVSA) respectively, to improve conductivity. Characterization of the materials by Fourier transform infrared spectroscopy (FTIR) confirmed the successful linking of the starting materials to produce the hinge molecule and nuclear magnetic resonance spectroscopy (NMR) supported the FTIR data. The electrochemistry of the polymer in the doped and undoped state was evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).Item Acylation of anisole with benzoyl chloride over rapidly synthesized fly ash–based hbea zeolite(Frontiers Media, 2021) Ameh, Alechine E.; Musyoka, Nicholas M.; Oyekola, OluwaseunStable HBEA zeolite with high surface area and strong acid sites was synthesized from coal fly ash–based silica extract via indirect hydrothermal synthesis. The rapid HBEA hydrothermal crystallization times of 8, 10, and 12 h were achieved through a reduced molar water fraction in the synthesis composition. The HBEA zeolites prepared from fly ash silica extract exhibited well-defined spheroidal-shaped crystal morphology with uniform particle sizes of 192, 190, or 239 nm obtained after 8, 10, or 12 h of synthesis time, respectively. The high surface area and the microporous area of 702 and 722 m2 /g were achieved as a function of shorter hydrothermal synthesis durations (10 and 24 h, respectively) compared to 48 or 72 h, which resulted in HBEA zeolites with lower surface areas of 538 and 670 m2 /g. Likewise, temperature-programmed desorption measurements of fly ash–based HBEA zeolites revealed the presence of weak and strong acid sites in the zeolite.Item Acylphloroglucinol derivatives from the South African helichrysum niveum and their biological activities(MDPI, 2015) Popoola, Olugbenga K.; Marnewick, Jeanine L.; Rautenbach, Fanie; Iwuoha, Emmanuel I.; Hussein, Ahmed A.Abstract: Phytochemical investigation of aerial parts of Helichrysum niveum (H. niveum) using different chromatographic methods including semi-preparative HPLC afforded three new (1–3) and six known (4–10) acylphloroglucinols alongside a known dialcohol triterpene (11). The structures of the isolated compounds were characterized accordingly as 1-benzoyl-3 (3-methylbut-2-enylacetate)-phloroglucinol (helinivene A, 1), 1-benzoyl-3 (2S-hydroxyl-3- methylbut-3-enyl)-phloroglucinol (helinivene B, 2), 8- (2-methylpropanone)-3S, 5, 7-trihydroxyl- 2,2-dimethoxychromane (helinivene C, 3), 1-(2-methylbutanone)-4-O-prenyl-phloroglucinol (4), 1-(2-methylpropanone)-4-O-prennyl-phloroglucinol (5), 1-(butanone)-3-prenyl-phloroglucinol (6), 1- (2-methylbutanone)-3-prenyl-phloroglucinol (7), 1-butanone-3- (3-methylbut-2-enylacetate)- phloroglucinol (8), 1-(2-methylpropanone)-3-prenylphloroglucinol (9), caespitate (10), and 3β-24-dihydroxyterexer-14-ene (11). Excellent total antioxidant capacities were demonstrated by helinivenes A and B (1 and 2) when measured as oxygen radicals absorbance capacity (ORAC), ferric-ion reducing antioxidant power (FRAP), trolox equivalent absorbance capacity (TEAC) and including the inhibition of Fe2+-induced lipid peroxidation (IC50 = 5.12 ± 0.90; 3.55 ± 1.92) µg/mL, while anti-tyrosinase activity at IC50 = 35.63 ± 4.67 and 26.72 ± 5.05 µg/mL were also observed for 1 and 2, respectively. This is the first chemical and in vitro biological study on H. niveum. These findings underpin new perspectives for theItem Advanced low temperature metal hydride materials for low temperature proton exchange membrane fuel cell application(University of the Western Cape, 2010) Ntsendwana, Bulelwa; Lototskyy, Mykhaylo; Williams, M.; Dept. of Chemistry; Faculty of ScienceEnergy is one of the basic needs of human beings and is extremely crucial for continued development of human life. Our work, leisure and our economic, social and physical welfare all depend on the sufficient, uninterrupted supply of energy. Therefore, it is essential to provide adequate and affordable energy for improving human welfare and raising living standards. Global concern over environmental climate change linked to fossil fuel consumption has increased pressure to generate power from renewable sources [1]. Although substantial advances in renewable energy technologies have been made, significant challenges remain in developing integrated renewable energy systems due primarily to mismatch between load demand and source capabilities [2]. The output from renewable energy sources such as photo-voltaic, wind, tidal, and micro-hydro fluctuate on an hourly, daily, and seasonal basis. As a result, these devices are not well suited for directly powering loads that require a uniform and uninterrupted supply of input energy.Item Advanced materials on the basis of nanostructured catalysed magnesium hydride for hydrogen storage(University of the Western Cape, 2019) Goh, Jonathan Teik Ean; Lototskyy, Mykhaylo; Yartys, V; Khotseng, L.Magnesium hydride has long been regarded as a promising candidate for lightweight hydrogen storage applications, owing to reasonably high theoretical capacity (7.6 wt. %). It is burdened by slow absorption/desorption kinetics which has been the target for improvement of many research groups over the years. Nanostructured MgH2 prepared by high energy reactive ball milling (HRBM) of Mg under hydrogen atmosphere with the addition of V or Ti results in modified MgH2 that demonstrates superior hydrogenation/dehydrogenation kinetics without a crippling compromise in storage capacity. Mg – FeV nanocomposites prepared via ball milling of Mg and FeV raw materials demonstrated up to 96.4% of the theoretical storage capacity and comparable kinetics to Mg - V prepared via the same method using pure refined V (which is far costlier than FeV). In both cases, the hydrogenation/dehydrogenation kinetics was much improved than pure Mg alone, as evidenced by faster hydrogenation times. In terms of cyclic stability, Mg – 10FeV demonstrated improvement over pure Mg with final absorption and desorption capacities of 4.93 ± 0.02 wt. % and 4.82 ± 0.02 wt. % respectively over 30 cycles. When compared against Mg – V, Mg – FeV showed slightly inferior improvements, attributed to incomplete hydrogenation of V in the presence of Fe. However, they share similar crystalline BCC, BCT – V2H and FCC - VH phases with the size of less than 10 nm and demonstrated the same behaviour at high temperatures; at temperatures approaching 400 °C, particle sintering became an issue for both nanocomposites resulting in a drop in absorption capacity even in the first cycle. The further inclusion of carbonaceous species showed several effects, one of which was an improvement in hydrogen uptake speed as well as kinetics for the addition of 5 wt. % activated carbon. For the sample with 5 wt. % graphite, the appearance of an initial incubation period of up to 60 minutes was noted, presumably corresponding to the duration of time when the carbon was sheared and crushed before hydrogenation commences.Item Advanced oxidative water treatment process using an electrohydraulic discharge reactor and TiO2 immobilised on nanofibres(University of Western Cape, 2013) Okolongo, Gauthier Nganda; Petrik, Leslie; Perold, WillemThe aim of this study was to design and build an electrohydraulic discharge reactor in such a way that the synthetic immobilized TiO2 nanophotocatalytic components could be integrated, for the production of active species such as OH radicals, ozone and hydrogen peroxide, as a cocktail to clean drinking water without the addition of chemicals. The research objectives include: • To design and construct the different AOP prototypes based on various electrode configurations and compare their operation. • To optimize the discharge parameters and conditions of the best AOP system. • To determine the effectiveness of the best prototype for the degradation of methylene blue as model pollutant. • To compare the designed AOP system with the Sodis method for the disinfection of contaminated river water. • To prepare supported TiO2 nanoparticles via electro spinning, followed by combustion and study the effect on the morphology of TiO2 nanoparticles. • To determine the stability and robustness of composite nano-crystalline TiO2 photocatalysts by sonication • To determine the enhanced effect of combining the composite TiO2 in the AOP system on degradation of methylene blue under the same conditions. • To detect the active species promoting disinfection.Item Advanced oxygen reduction reaction catalysts/material for direct methanol fuel cell (dmfc) application(University of the Western Cape, 2014) Motsoeneng, Rapelang Gloria; Khotseng, L.; Modibedi, R.M.Fuel cells are widely considered to be efficient and non-polluting power source offering much higher energy density. This study is aimed at developing oxygen reduction reactions (ORR) catalysts with reduced platinum (Pt) loading. In order to achieve this aim, monometallic Pd and Pt nanostructured catalysts were electrodeposited on a substrate (carbon paper) by surface limited redox replacement using electrochemical atomic layer deposition (ECALD) technique. Pd:Pt bimetallic nanocatalysts were also deposited on carbon paper. Pd:Pt ratios were (1:1, 2.1 and 3:1). The prepared mono and bimetallic catalysts were characterized using electrochemical methods for the ORR in acid electrolyte. The electrochemical characterization of these catalysts includes: Cyclic Voltammetry (CV) and linear sweep voltammetry (LSV). The physical characterization includes: scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) for Morphology and elemental composition, respectively. The deposition of copper (Cu) on carbon paper was done by applying a potential of -0.05 V at 60s, 90s and 120s. 8x cycles of Pt or Pd showed better electrochemical activity towards hydrogen oxidation reaction. Multiples of eight were used in this work to deposit Pt: Pd binary catalyst. Cyclic voltammetry showed high electroactive surface area for Pt24Pd24/Carbon-paper while LSV showed high current density and positive onset potential. HRSEM also displayed small particle size compared to other Pt:Pd ratios.Item Advanced Ti – based AB and AB2 hydride forming materials(University of the Western Cape, 2011) Davids, Wafeeq; Linkov, V.M; Lototsky, M.VTi – based AB and AB₂ hydride forming materials have shown to be very promising hydrogen storage alloys due to their reasonable reversible hydrogen storage capacity at near ambient conditions, abundance and low cost. However, these materials are not used extensively due to their poor activation performances and poisoning tolerance, resulting insignificant impeding of hydrogen sorption. The overall goal of this project was to develop the knowledge base for solid-state hydrogen storage technology suitable for stationary and special vehicular applications focussing mainly on Ti – based metal hydrides. In order to accomplish this goal, the project had a dual focus which included the synthesis methodology of Ti – based AB and AB₂ materials and the development of new surface engineering solutions, based on electroless plating and chemical vapour deposition on the surface modification of Ti – based metal hydride forming materials using Pd-based catalytic layers. TiFe alloy was synthesised by sintering of the Ti and Fe powders and by arc-melting. Sintered samples revealed three phases: TiFe (major), Ti₄Fe₂O, and β-Ti. Hydrogen absorption showed that the sintered material was almost fully activated after the first vacuum heating (400 °C) when compared to the arc-melted sample requiring several activation cycles. The increase in the hydrogen absorption kinetics of the sintered sample was associated with the influence of the formed hydrogen transfer catalyst, viz. oxygen containing Ti₄Fe₂O₁₋ₓ and β-Ti, which was confirmed by the XRD data from the samples before and after hydrogenation. The introduction of oxygen impurity into TiFe alloy observed in the sintered sample significantly influenced on its PCT performances, due to formation of stable hydrides of the impurity phases, as well as destabilisation of both β-TiFeH and, especially, γ-TiFeH₂. This finally resulted in the decrease of the reversible hydrogen storage capacity of the oxygen-contaminated sample. TiFe alloy was also prepared via induction melting using graphite and alumo-silica crucibles. It was shown that the samples prepared via the graphite crucible produced TiFe alloy as the major phase, whereas the alumo-silica crucible produced Ti₄Fe₂O₁-x and TiFe₂ as the major phases, and TiFe alloy as the minor one. A new method for the production of TiFe – based materials by two-stage reduction of ilmenite (FeTiO₃) using H₂ and CaH₂ as reducing agents was developed. The reversible hydrogen absorption performance of the TiFe – based material prepared via reduction of ilmenite was 0.5 wt. % H, although hydrogen absorption capacity of TiFe reported in the literature should be about 1.8 wt. %. The main reason for this low hydrogen capacity is due to large amount of oxygen present in the as prepared TiFe alloy. Thus to improve the hydrogen absorption of the raw TiFe alloy, it was melted with Zr, Cr, Mn, Ni and Cu to yield an AB₂ alloy. For the as prepared AB₂ alloy, the reversible hydrogen sorption capacity was about 1.3 wt. % H at P=40 bar and >1.8 wt.% at P=150 bar, which is acceptable for stationary applications. Finally, the material was found to be superior as compared to known AB₂-type alloys, as regards to its poisoning tolerance: 10-minutes long exposure of the dehydrogenated material to air results in a slight decrease of the hydrogen absorption capacity, but almost does not reduce the rate of the hydrogenation. Hydrogen storage performance of the TiFe-based materials suffers from difficulties with hydrogenation and sensitivity towards impurities in hydrogen gas, reducing hydrogen uptake rates and decreasing the cycle stability. An efficient solution to this problem is in modification of the material surface by the deposition of metals (including Palladium) capable of catalysing the dissociative chemisorption of hydrogen molecules. In this work, the surface modification of TiFe alloy was performed using autocatalytic deposition using PdCl₂ as the Pd precursor and metal-organic chemical vapour deposition technique (MO CVD), by thermal decomposition of palladium (II) acetylacetonate (Pd[acac]₂) mixed with the powder of the parent alloy. After surface modification of TiFe – based metal hydride materials with Pd, the alloy activation performance improved resulting in the alloy absorbing hydrogen without any activation process. The material also showed to absorb hydrogen after exposure to air, which otherwise proved detrimental.Item Advances in nanotechnology towards development of silver nanoparticle-based wound-healing agents(MPDI, 2021) Nqakala, Zimkhitha B.; Sibuyi, Nicole R. S.; Fadaka, Adewale O.Since antiquity, silver-based therapies have been used in wound healing, wound care and management of infections to provide adequate healing. These therapies are associated with certain limitations, such as toxicity, skin discolouration and bacterial resistance, which have limited their use. As a result, new and innovative wound therapies, or strategies to improve the existing therapies, are sought after. Silver nanoparticles (AgNPs) have shown the potential to circumvent the limitations associated with conventional silver-based therapies as described above. AgNPs are effective against a broad spectrum of microorganisms and are less toxic, effective at lower concentrations and produce no skin discolouration. Furthermore, AgNPs can be decorated or coupled with other healingpromoting materials to provide optimum healing. This review details the history and impact of silver-based therapies leading up to AgNPs and AgNP-based nanoformulations in wound healing. It also highlights the properties of AgNPs that aid in wound healing and that make them superior to conventional silver-based wound treatment therapies.Item Aerosol mass and size‑resolved metal content in urban Bangkok, Thailand(Springer, 2022) Matthews, James C.; Navasumrit, Panida; Shallcross, Dudley E.Inhalable particulate matter (PM) is a health concern, and people living in large cities such as Bangkok are exposed to high concentrations. This exposure has been linked to respiratory and cardiac diseases and cancers of the lung and brain. Throughout 2018, PM was measured in northern Bangkok near a toll road (13.87°N, 100.58°E) covering all three seasons (cool, hot and rainy). PM10 was measured in 24- and 72-h samples. On selected dates aerodynamic size and mass distribution were measured as 3-day samples from a fxed 5th foor inlet. Particle number concentration was measured from the 5th foor inlet and in roadside survey measurements. There was a large fraction of particle number concentration in the sub-micron range, which showed the greatest variability compared with larger fractions. Metals associated with combustion sources were most found on the smaller size fraction of particles, which may have implications for associated adverse health outcomes because of the likely location of aerosol deposition in the distal airways of the lung. PM10 samples varied between 30 and 100 μg m−3, with highest concentrations in the cool season.Item Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of plectranthus ecklonii constituents(MDPI, 2022) Etsassala, Ninon G. E. R.; Badmus, Jelili A.; Iwuoha, Emmanuel. I.Shortage in insulin secretion or degradation of produced insulin is the principal characteristic of the metabolic disorder of diabetes mellitus (DM). However, because the current medications for the treatment of DM have many detrimental side effects, it is necessary to develop more effective antidiabetic drugs with minimal side effects. Alpha-glucosidase and alpha-amylase inhibitors are directly implicated in the delay of carbohydrate digestion. Pharmacologically, these inhibitors could be targeted for the reduction in glucose absorption rate and, subsequently, decreasing the postprandial rise in plasma glucose and the risk for long-term diabetes complications. The main objectives of this research study were to isolate different phytochemical constituents present in the methanolic extract of Plectranthus ecklonii and evaluate their alpha-glucosidase and alpha-amylase inhibitory activities and antioxidant capacity.Item Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of salvia aurita constituents(MPDI, 2020) Etsassala, Ninon G.E.R.; Badmus, Jelili A.; Marnewick, Jeanine L.Diabetes mellitus (DM) is one of the most dangerous metabolic diseases with a high rate of mortality worldwide. It is well known that insulin resistance and deficiency in insulin production from pancreatic β-cells are the main characteristics of DM. Due to the detrimental side effects of the current treatment, there is a considerable need to develop new effective antidiabetic drugs, especially alpha-glucosidase and alpha-amylase inhibitors with lesser adverse effects. These inhibitors are known to be directly involved in the delay of carbohydrate digestion, resulting in a reduction of glucose absorption rate and, consequently, reducing the postprandial rise of plasma glucose, which can reduce the risk of long-term diabetes complications. Furthermore, natural products are well-known sources for the discovery of new bioactive compounds that can serve as scaffolds for drug discovery, including that of new antidiabetic drugs. The phytochemical investigation of Salvia aurita collected from Hogobach Pass, Eastern Cape Province, South Africa (SA), yielded four known abietane diterpenes namely carnosol (1), rosmanol (2), 7-methoxyrosmanol (3), 12-methoxycarnosic acid (4), and one flavonoid named 4,7-dimethylapigenin (5)Item Aluminium and gold functionalized graphene quantum dots as electron acceptors for inverted Schottky junction type rainbow solar cells(University of Western Cape, 2020) Mathumba, Penny; Iwuoha, EmmanuelThe main aim of this study was to prepare band gap-engineered graphene quantum dot (GQD) structures which match the different energies of the visible region in the solar spectrum. These band gap-engineered graphene quantum dot structures were used as donor materials in rainbow Schottky junction solar cells, targeting all the energies in the visible region of the solar spectrum for improved solar-to-electricity power conversion efficiency. Structural characterisation of the prepared nanomaterials under solid-state nuclear magnetic resonance spectroscopy (SS-NMR) showed appearance of bands at 40 ppm due to the presence of sp3 hybridised carbon atoms from the peripheral region of the GQD structures. Other bands were observed at 130 ppm due to the presence of polycyclic aromatic carbon atoms from the benzene rings of the GQD backbone, and around 180 ppm due to the presence of carboxylic acid carbons from oxidation due to moisture. Fourier-transform infrared resonance (FTIR) spectroscopy further confirmed the presence of aromatic carbon atoms and oxidised carbons due to the presence of C=O, C=C and -OH functional groups, concurrent with SS-NMR results.