Magister Scientiae - MSc (Herbal Science and Medicine)
Permanent URI for this collection
Browse
Browsing by Title
Now showing 1 - 20 of 26
Results Per Page
Sort Options
Item An assessment of Hypoxis hemerocallidea extracts, and actives as natural antibiotic, and immune modulation phytotherapies(University of the Western Cape, 2006) Muwanga, Catherine; Johnson, Quinton; South African Herbal Science and Medicine Institute (SAHSMI); Faculty of ScienceIn South Africa, the crude aqueous extract from Hypoxis hemerocallidea is used by AIDS patients to treat opportunistic infections, such as tuberculosis. The rapid emergence of multidrug-resistant tuberculosis, and extreme drug resistant tuberculosis, in recent years, is a major threat to human health. The treatment of TB, nosocomial bacterial infections, and fungal infections is now a clinical challenge, especially in the immuno-compromised individual. There is a dire need for novel antibiotic alternatives with phytotherapies and plant-derived compounds as potentially promising alternatives. The main objective of this study was to investigate the antimycobacterial activity of Hypoxis hemerocallidea, a South African medicinal plant, using Mycobacterium smegmatis.Item An assessment of Hypoxis hemerocallidea extracts, and actives as natural antibiotic, and immune modulation phytotherapies(University of the Western Cape, 2006) Muwanga, Catherine; Johnson, Quinton; South African Herbal Science and Medicine Institute (SAHSMI); Faculty of ScienceIn South Africa, the crude aqueous extract from Hypoxis hemerocallidea is used by AIDS patients to treat opportunistic infections, such as tuberculosis. The rapid emergence of multidrug-resistant tuberculosis, and extreme drug resistant tuberculosis, in recent years, is a major threat to human health. The treatment of TB, nosocomial bacterial infections, and fungal infections is now a clinical challenge, especially in the immuno-compromised individual. There is a dire need for novel antibiotic alternatives with phytotherapies and plant-derived compounds as potentially promising alternatives. The main objective of this study was to investigate the antimycobacterial activity of Hypoxis hemerocallidea, a South African medicinal plant, using Mycobacterium smegmatis.Item An assessment of medicinal hemp plant extracts as natural antibiotic and immune modulation phytotherapies(University of the Western Cape, 2005) Case, Olivia Hildegard; Dept. of Medical BioSciences; Faculty of ScienceThis study aimed to evaluate the antimicrobial efficacy of medicinal hemp plant extracts to determine the antibacterial effects of indigenous Sansevieria species and exotic Cannabis sativa phytotherapy varieties. This study also assessed whether aqueous oItem An assessment of medicinal hemp plant extracts as natural antibiotic and immune modulation phytotherapies(University of the Western Cape, 2005) Case, Olivia Hildegard; Dept. of Medical BioSciences; Faculty of ScienceThis study aimed to evaluate the antimicrobial efficacy of medicinal hemp plant extracts to determine the antibacterial effects of indigenous Sansevieria species and exotic Cannabis sativa phytotherapy varieties. This study also assessed whether aqueous oItem Effects of environmental growth conditions on the levels of sutherlandins 3 and 4 and sutherlandiosides B and D, in Sutherlandia frutescens (L.) R. Br.(University of the Western Cape, 2011) Whisgary, Darryn; Syce, James A.Sutherlandia frutescens (L.) R. Br. (Fabaceae), indigenous to the Western Cape region of South Africa, is found in a Mediterranean-type climate known for its many environmental stressors that can influence the levels of metabolites found in plants. Sutherlandia frutescens contains many known potential active constituents among them, flavonoids such as sutherlandins 3 and 4 (Su3 and Su4) and terpenoids such as sutherlandiosides B and D (SuB and SuD). Whether the profiles and levels of Su3, Su4, SuB and SuD are significantly affected by the environmental factors found in this area is however, unknown. iBatech™ is an ethanolic plant extract that is manufactured by researchers in the Department of Medical Biosciences, UWC, for use as a pesticide. HPLC analysis performed on Lycopersicon species treated with the iBatech™ product have shown that it also caused an increase in the concentrations of total polyphenols in the plant (Klaasen et.al., unpublished data). Whether the treatment with iBatech™ might also cause an increase in the polyphenols such as sutherlandins 3 and 4 and sutherlandiosides B and D is also unknown. The objectives of this study were to determine the concentrations of sutherlandins 3 and 4 (Su3 and Su4) and sutherlandiosides B and D (SuB and SuD) in S. frutescens collected from different sites and after the treatment with the iBatech™ product. The specific objectives were: a) to locate and categorize sites where S. frutescens is grown, based on a selection of pertinent environmental growth factors, b) to determine and compare the concentrations of sutherlandins 3 and 4 and sutherlandiosides B and D in S. frutescens collected from the different environmental growth sites and after treatment with the iBatech™ product. To realize these objectives, S. frutescens samples were collected from eight different sites and broadly categorized into three environmental categories. A high-performance liquid chromatography (HPLC) method using diode array ultraviolet detection (HPLC-DAD) for the simultaneous analysis of flavonoids and terpenoids was developed and validated, and used for the profiling and determination of the average levels of sutherlandins 3 and 4 and sutherlandiosides B and D in the samples from the sites and that treated with the iBatech™ product. The Kruskal-Wallis test was used to determine statistically significant differences among the environmental categories. The post ANOVA, Dunn's Multiple Comparison test was performed to determine which groups were significantly different. The Mann-Whitney, two-tail, t-test was used to compare each environmental category to the standard and the column statistics of the raw data was analyzed to determine significant differences among samples from the same environmental category. In the samples collected from the sites, the values represent the average levels of metabolites for each environmental category whereas the significance values indicated were among samples from the same environmental category. The levels for sutherlandin 3 were Afriplex™ (Std.) 2495.08, the natural field (NF) 2810.33 (P=0.0005), the cultivated field (CF) 2519.81 and the greenhouse (GH) 2580.25. The levels for sutherlandin 4 were significantly different when comparing the (NF) 1495.67 (P=0.0001), (CF) 3114.42 (P=0.0140) and (GH) 2361.72 (P=0.0001), with the CF group showing the highest levels of Su4 and the NF showing the lowest. The levels for sutherlandioside B were (NF) 189.7 (P=0.0189), (CF) 594.56 (P=0.0140) and (GH) 326.72 (P=0.0001), however, the CF group showed the highest average levels for SuB. The levels for sutherlandioside D were (NF) 144.1 (P=0.0192), (CF) 544.37 (P=0.0308) and (GH) 387.49 (P=0.0001), with the NF category having the lowest average levels. In the iBatech™ treated samples, the values indicate the average levels of three samples in each treatment group. The levels for sutherlandin 3 were (control) 9758.43, the (50%) 2232.63 and the (100%) 2031.97 treatment groups. The levels for sutherlandin 4) were (control) 2241.63, the (50%) 2247.47 and the (100%) 2392.60, with the 100% treatment group having the highest levels. The levels for sutherlandioside B were (control) 289.66, the (50%) 284.93 and the (100%) 332.30. The levels for sutherlandioside D were (control) 282.77, the (50%) 280.60 and the (100%) 315.13 treatment groups, with the 100% treatment group having the highest levels. The levels of Su3, Su4, SuB and SuD were significantly different (P=0.0001) among all treatment groups. In conclusion, the data shows that only sutherlandin 4 (Su4) was significantly different when comparing the environmental groups. Due to the significant differences in the Su3, Su4, SuB and SuD levels among samples from the same group the levels of these metabolites cannot be correlated with the environmental groups.Item Effects of environmental growth conditions on the levels of sutherlandins 3 and 4 and sutherlandiosides B and D, in Sutherlandia frutescens (L.) R. Br.(University of the Western Cape, 2011) Whisgary, Darryn; Syce, James A.Sutherlandia frutescens (L.) R. Br. (Fabaceae), indigenous to the Western Cape region of South Africa, is found in a Mediterranean-type climate known for its many environmental stressors that can influence the levels of metabolites found in plants. Sutherlandia frutescens contains many known potential active constituents among them, flavonoids such as sutherlandins 3 and 4 (Su3 and Su4) and terpenoids such as sutherlandiosides B and D (SuB and SuD). Whether the profiles and levels of Su3, Su4, SuB and SuD are significantly affected by the environmental factors found in this area is however, unknown. iBatech™ is an ethanolic plant extract that is manufactured by researchers in the Department of Medical Biosciences, UWC, for use as a pesticide. HPLC analysis performed on Lycopersicon species treated with the iBatech™ product have shown that it also caused an increase in the concentrations of total polyphenols in the plant (Klaasen et.al., unpublished data). Whether the treatment with iBatech™ might also cause an increase in the polyphenols such as sutherlandins 3 and 4 and sutherlandiosides B and D is also unknown. The objectives of this study were to determine the concentrations of sutherlandins 3 and 4 (Su3 and Su4) and sutherlandiosides B and D (SuB and SuD) in S. frutescens collected from different sites and after the treatment with the iBatech™ product. The specific objectives were: a) to locate and categorize sites where S. frutescens is grown, based on a selection of pertinent environmental growth factors, b) to determine and compare the concentrations of sutherlandins 3 and 4 and sutherlandiosides B and D in S. frutescens collected from the different environmental growth sites and after treatment with the iBatech™ product. To realize these objectives, S. frutescens samples were collected from eight different sites and broadly categorized into three environmental categories. A high-performance liquid chromatography (HPLC) method using diode array ultraviolet detection (HPLC-DAD) for the simultaneous analysis of flavonoids and terpenoids was developed and validated, and used for the profiling and determination of the average levels of sutherlandins 3 and 4 and sutherlandiosides B and D in the samples from the sites and that treated with the iBatech™ product. The Kruskal-Wallis test was used to determine statistically significant differences among the environmental categories. The post ANOVA, Dunn's Multiple Comparison test was performed to determine which groups were significantly different. The Mann-Whitney, two-tail, t-test was used to compare each environmental category to the standard and the column statistics of the raw data was analyzed to determine significant differences among samples from the same environmental category. In the samples collected from the sites, the values represent the average levels of metabolites for each environmental category whereas the significance values indicated were among samples from the same environmental category. The levels for sutherlandin 3 were Afriplex™ (Std.) 2495.08, the natural field (NF) 2810.33 (P=0.0005), the cultivated field (CF) 2519.81 and the greenhouse (GH) 2580.25. The levels for sutherlandin 4 were significantly different when comparing the (NF) 1495.67 (P=0.0001), (CF) 3114.42 (P=0.0140) and (GH) 2361.72 (P=0.0001), with the CF group showing the highest levels of Su4 and the NF showing the lowest. The levels for sutherlandioside B were (NF) 189.7 (P=0.0189), (CF) 594.56 (P=0.0140) and (GH) 326.72 (P=0.0001), however, the CF group showed the highest average levels for SuB. The levels for sutherlandioside D were (NF) 144.1 (P=0.0192), (CF) 544.37 (P=0.0308) and (GH) 387.49 (P=0.0001), with the NF category having the lowest average levels. In the iBatech™ treated samples, the values indicate the average levels of three samples in each treatment group. The levels for sutherlandin 3 were (control) 9758.43, the (50%) 2232.63 and the (100%) 2031.97 treatment groups. The levels for sutherlandin 4) were (control) 2241.63, the (50%) 2247.47 and the (100%) 2392.60, with the 100% treatment group having the highest levels. The levels for sutherlandioside B were (control) 289.66, the (50%) 284.93 and the (100%) 332.30. The levels for sutherlandioside D were (control) 282.77, the (50%) 280.60 and the (100%) 315.13 treatment groups, with the 100% treatment group having the highest levels. The levels of Su3, Su4, SuB and SuD were significantly different (P=0.0001) among all treatment groups. In conclusion, the data shows that only sutherlandin 4 (Su4) was significantly different when comparing the environmental groups. Due to the significant differences in the Su3, Su4, SuB and SuD levels among samples from the same group the levels of these metabolites cannot be correlated with the environmental groups.Item The effects of maternal diets, varying in fat content, on proximal hepatic and skeletal muscle insulin signalling in neonatal wistar rat offspring(University of the Western Cape, 2013) Ndlovu, Zibele; Syce, James; Cerf, Marlon E.The incidence of type 2 diabetes (T2D) is persistently increasing globally. T2D is associated with pancreatic β cell dysfunction and insulin resistance in peripheral tissues such as the liver and skeletal muscle. Skeletal muscle is the major site for insulin stimulated glucose uptake. Maintenance on a gestational high fat diet may programme insulin resistance. Programming is induced by the exposure of organisms to either a stimulus or insult during foetal and/or early neonatal life and alters offspring physiology and metabolism. The aim of the present study was therefore to investigate the effects of maternal diets, varying in fat content, on neonatal hepatic and skeletal muscle gene (mRNA) and protein (immunoreactivity) expression of proximal insulin signalling factors: insulin receptor alpha (IRα), insulin receptor substrate 2 (IRS2) and phosphoinositide 3-kinase-p110 alpha (PI3K-p110α), and to assess the therapeutic potential of Aspalathus linearis extract after high fat programming. Pregnant rats were randomised into groups maintained on diets with varying fat proportions: 10% (control), 20% (20F), 30% (30F) and 40% (40F) fat as energy throughout gestation. Neonatal liver and skeletal muscle were collected to determine the proximal insulin signalling expression profiles of the target factors: IRα, IRS2 and PI3K-p110α. Quantitative polymerase chain reaction (qPCR) was applied to determine mRNA expression of these target insulin signalling factors. Immunostaining of the target proteins in the liver and skeletal muscle was performed followed by relative quantification with image analysis software. Further, Aspalathus linearis (Al) extract was orally administered to mothers during gestation in the 10% (Control-Al) and 40% (HFD-Al) diets at a dose of 150 mg/kg. Body weight, food intake and blood glucose concentrations were monitored throughout gestation in mothers. Maternal diets, varying in the percentage of fat content, showed no significant effect on neonatal hepatic IR and IRS2 mRNA expression. However, hepatic PI3K mRNA expression was elevated in 30F neonates compared to 20F neonates. Skeletal muscle IR and PI3K mRNA expression were reduced in the 30F and 40F neonates compared to 20F neonates. There was reduced hepatic IRα immunoreactivity in 40F neonates compared to control and 20F neonates. Further, skeletal muscle IRα immunoreactivity was significantly reduced in 30F and 40F neonates compared to control neonates. Therefore foetal high fat programming reduced IRα in both the liver and skeletal muscle which may impair proximal insulin signalling in these glucose recipient organs. Aspalathus linearis had no effect on maternal serum insulin and glucagon concentrations. In addition, maternal caloric intake, body weight and organ weights (liver, brain and pancreas) were not altered amongst the groups. Further, HFD-Al neonates were heavier than control neonates. In conclusion, Aspalathus linearis, at a dose of 150 mg/kg, had neither harmful nor ameliorative effects in pregnant mothers fed high fat diet during gestation. In addition, Aspalathus linearis treatment had no ameliorative effects on neonates from mothers fed high fat diet throughout gestation.Item The effects of maternal diets, varying in fat content, on proximal hepatic and skeletal muscle insulin signalling in neonatal wistar rat offspring(University of the Western Cape, 2013) Ndlovu, Zibele; Syce, James; Cerf, Marlon E.The incidence of type 2 diabetes (T2D) is persistently increasing globally. T2D is associated with pancreatic β cell dysfunction and insulin resistance in peripheral tissues such as the liver and skeletal muscle. Skeletal muscle is the major site for insulin stimulated glucose uptake. Maintenance on a gestational high fat diet may programme insulin resistance. Programming is induced by the exposure of organisms to either a stimulus or insult during foetal and/or early neonatal life and alters offspring physiology and metabolism. The aim of the present study was therefore to investigate the effects of maternal diets, varying in fat content, on neonatal hepatic and skeletal muscle gene (mRNA) and protein (immunoreactivity) expression of proximal insulin signalling factors: insulin receptor alpha (IRα), insulin receptor substrate 2 (IRS2) and phosphoinositide 3-kinase-p110 alpha (PI3K-p110α), and to assess the therapeutic potential of Aspalathus linearis extract after high fat programming. Pregnant rats were randomised into groups maintained on diets with varying fat proportions: 10% (control), 20% (20F), 30% (30F) and 40% (40F) fat as energy throughout gestation. Neonatal liver and skeletal muscle were collected to determine the proximal insulin signalling expression profiles of the target factors: IRα, IRS2 and PI3K-p110α. Quantitative polymerase chain reaction (qPCR) was applied to determine mRNA expression of these target insulin signalling factors. Immunostaining of the target proteins in the liver and skeletal muscle was performed followed by relative quantification with image analysis software. Further, Aspalathus linearis (Al) extract was orally administered to mothers during gestation in the 10% (Control-Al) and 40% (HFD-Al) diets at a dose of 150 mg/kg. Body weight, food intake and blood glucose concentrations were monitored throughout gestation in mothers. Maternal diets, varying in the percentage of fat content, showed no significant effect on neonatal hepatic IR and IRS2 mRNA expression. However, hepatic PI3K mRNA expression was elevated in 30F neonates compared to 20F neonates. Skeletal muscle IR and PI3K mRNA expression were reduced in the 30F and 40F neonates compared to 20F neonates. There was reduced hepatic IRα immunoreactivity in 40F neonates compared to control and 20F neonates. Further, skeletal muscle IRα immunoreactivity was significantly reduced in 30F and 40F neonates compared to control neonates. Therefore foetal high fat programming reduced IRα in both the liver and skeletal muscle which may impair proximal insulin signalling in these glucose recipient organs. Aspalathus linearis had no effect on maternal serum insulin and glucagon concentrations. In addition, maternal caloric intake, body weight and organ weights (liver, brain and pancreas) were not altered amongst the groups. Further, HFD-Al neonates were heavier than control neonates. In conclusion, Aspalathus linearis, at a dose of 150 mg/kg, had neither harmful nor ameliorative effects in pregnant mothers fed high fat diet during gestation. In addition, Aspalathus linearis treatment had no ameliorative effects on neonates from mothers fed high fat diet throughout gestation.Item Evaluation of the antioxidant and anti-diabesity potential of cyclopia maculata using in vitro non-cell based screening models(University of the Western Cape, 2014) Matrose, Albertina Neliswa; Syce, James A.; Joubert, E; Malherbe, C.JThe aim of this study was therefore to evaluate the antioxidant and anti-diabesity potential of a hot water extract of C. maculata in non-cell based assays and correlate the activities with phenolic composition. Total antioxidant capacity (TAC) was assessed in terms of free radical scavenging and iron reducing ability. The DPPH, ABTS, ORAC and FRAP assays were employed. Anti-diabesity potential was assessed in terms of the inhibition of the digestive enzymes, α-glucosidase and pancreatic lipaseItem Evaluation of the antioxidant and anti-diabesity potential of cyclopia maculata using in vitro non-cell based screening models(University of the Western Cape, 2014) Matrose, Albertina Neliswa; Syce, James A.; Joubert, E; Malherbe, C.JThe aim of this study was therefore to evaluate the antioxidant and anti-diabesity potential of a hot water extract of C. maculata in non-cell based assays and correlate the activities with phenolic composition. Total antioxidant capacity (TAC) was assessed in terms of free radical scavenging and iron reducing ability. The DPPH, ABTS, ORAC and FRAP assays were employed. Anti-diabesity potential was assessed in terms of the inhibition of the digestive enzymes, α-glucosidase and pancreatic lipaseItem Garlic and African olive used as traditional Herbs for hypertension in the Western Cape(University of the Western Cape, 2012) Blouws, Tarryn Alicia; Hughes, Gail D.; Puoane, ThandiHypertension is a common chronic health problem worldwide due to contributing factors such as obesity, physical inactivity, unhealthy diet and changes in lifestyle. The standard of care for hypertension in South Africa is prescription medication, as well as a stepwise programme; this treatment approach is for the treatment of hypertension according to severity using diuretics, beta-blockers, vasodilators in a stepwise progressive manner. In South Africa,traditional herbal medicines have been used to treat many ailments especially hypertension.Garlic and African olive has been reported as herbal medicines that have anti-hypertensive properties and may be used to control hypertension, either individually or in combination.The objective of this study is to 1) prevalence of these traditional herbal medicines will be investigated and 2) determine the prevalence of garlic and/ or African olive use among hypertensive patients lieu of/or in combination with prescription medication. The study design was cross-sectional, comprising of two phases. Phase one was the administration of questionnaires concerning the participants‘ demographics, medical/clinical history, chronic illness and traditional herbal treatment. One hundred and eighty participants from Prospective Urban Rural Epidemiological study (PURE) cohort were administered questionnaires. Of the 180 participants, 139 indicated that they are hypertensive, 30 hypertensive participants were selected to participate in the in-depth interviews. Phase two was divided into two parts which were detailed interviews including in-depth interviews and a focus group discussion. The focus group discussion was conducted with a convenience sample of 10 hypertensive patients who were available on the day of data collection. The questionnaire data was analysed with the Statistical Package for the Social Sciences (SPSS) and the interviews and focus group discussion was analysed using thematic content analysis.The results show that the participants with hypertension who are on prescription medication are also using traditional herbs, garlic and African olive as part of a dualistic health care treatment for their hypertension. The use of garlic is more prevalent than the use of African olive, as African olive was not well known among the participants.The results will facilitate in the acknowledgment of traditional herbal medicine use for hypertension, as either a home remedy for (other) chronic conditions or treatment in combination with prescription medication. It also highlights the necessity to educate participants and healthcare providers in the use of traditional herbal medicine. Furthermore, healthcare workers needs to be trained about THM and should also be obligated to ask about traditional herbal medicine among their patients.Item Garlic and African olive used as traditional Herbs for hypertension in the Western Cape(University of the Western Cape, 2012) Blouws, Tarryn Alicia; Hughes, Gail D.; Puoane, ThandiHypertension is a common chronic health problem worldwide due to contributing factors such as obesity, physical inactivity, unhealthy diet and changes in lifestyle. The standard of care for hypertension in South Africa is prescription medication, as well as a stepwise programme; this treatment approach is for the treatment of hypertension according to severity using diuretics, beta-blockers, vasodilators in a stepwise progressive manner. In South Africa,traditional herbal medicines have been used to treat many ailments especially hypertension.Garlic and African olive has been reported as herbal medicines that have anti-hypertensive properties and may be used to control hypertension, either individually or in combination.The objective of this study is to 1) prevalence of these traditional herbal medicines will be investigated and 2) determine the prevalence of garlic and/ or African olive use among hypertensive patients lieu of/or in combination with prescription medication. The study design was cross-sectional, comprising of two phases. Phase one was the administration of questionnaires concerning the participants‘ demographics, medical/clinical history, chronic illness and traditional herbal treatment. One hundred and eighty participants from Prospective Urban Rural Epidemiological study (PURE) cohort were administered questionnaires. Of the 180 participants, 139 indicated that they are hypertensive, 30 hypertensive participants were selected to participate in the in-depth interviews. Phase two was divided into two parts which were detailed interviews including in-depth interviews and a focus group discussion. The focus group discussion was conducted with a convenience sample of 10 hypertensive patients who were available on the day of data collection. The questionnaire data was analysed with the Statistical Package for the Social Sciences (SPSS) and the interviews and focus group discussion was analysed using thematic content analysis.The results show that the participants with hypertension who are on prescription medication are also using traditional herbs, garlic and African olive as part of a dualistic health care treatment for their hypertension. The use of garlic is more prevalent than the use of African olive, as African olive was not well known among the participants.The results will facilitate in the acknowledgment of traditional herbal medicine use for hypertension, as either a home remedy for (other) chronic conditions or treatment in combination with prescription medication. It also highlights the necessity to educate participants and healthcare providers in the use of traditional herbal medicine. Furthermore, healthcare workers needs to be trained about THM and should also be obligated to ask about traditional herbal medicine among their patients.Item The immune-modulating activity of Artemisia afra(University of the Western Cape, 2010) Kriel, Yusra; Pool, Edmund J.; Faculty of ScienceThis study shows that herbs can be effectively screened for potiential bio-activity using in vitro methods. Further studies will be needed to better explore Artemisia afra’s effect on immunoregulation, particularly long term effects of the herb on the immune system and its effect on other disease states.Item The immune-modulating activity of Artemisia afra(University of the Western Cape, 2010) Kriel, Yusra; Pool, Edmund J.; Faculty of ScienceThis study shows that herbs can be effectively screened for potiential bio-activity using in vitro methods. Further studies will be needed to better explore Artemisia afra’s effect on immunoregulation, particularly long term effects of the herb on the immune system and its effect on other disease states.Item The immune-modulating activity of Sutherlandia frutescens(University of the Western Cape, 2010) Kisten, Najwa; Pool, Edmund J.; NULL; Faculty of ScienceThe aim of this study was to investigate the effects of Sutherlandia frutescens on the inflammatory response and T cell differentiation in vitro using cytokines as biomarkers. Whole blood cells containing various concentrations of Sutherlandia frutescens were stimulated in vitro with either Lipopolysaccharide (LPS) or Phytohaemagglutinin (PHA). Results show that Sutherlandia frutescens is not toxic at any of the concentrations tested. The addition of Sutherlandia frutescens at high concentrations to the stimulated whole blood cell cultures reflects a significant down regulation of Interleukin(IL) 6 and IL-10 compared to the control (P<0.05) hence suppressed the inflammatory and humoral immune response. Results obtained for Inteferon-gamma (IFN ) shows that Sutherlandia frutescens is donor specific as it reflects both up and down regulation in the release of IFN at the concentrations tested. The in vitro data generated by this study supports the use of Sutherlandia frutescens in the management of inflammatory conditions and allergies such as asthma. However the effects of Sutherlandia frutescens on cell mediated immunity was found to be donor specific. Further investigation of Sutherlandia frutescens on cellular immunity is advised.Item The immune-modulating activity of Sutherlandia frutescens(University of the Western Cape, 2010) Kisten, Najwa; Pool, Edmund J.; NULL; Faculty of ScienceThe aim of this study was to investigate the effects of Sutherlandia frutescens on the inflammatory response and T cell differentiation in vitro using cytokines as biomarkers. Whole blood cells containing various concentrations of Sutherlandia frutescens were stimulated in vitro with either Lipopolysaccharide (LPS) or Phytohaemagglutinin (PHA). Results show that Sutherlandia frutescens is not toxic at any of the concentrations tested. The addition of Sutherlandia frutescens at high concentrations to the stimulated whole blood cell cultures reflects a significant down regulation of Interleukin(IL) 6 and IL-10 compared to the control (P<0.05) hence suppressed the inflammatory and humoral immune response. Results obtained for Inteferon-gamma (IFN ) shows that Sutherlandia frutescens is donor specific as it reflects both up and down regulation in the release of IFN at the concentrations tested. The in vitro data generated by this study supports the use of Sutherlandia frutescens in the management of inflammatory conditions and allergies such as asthma. However the effects of Sutherlandia frutescens on cell mediated immunity was found to be donor specific. Further investigation of Sutherlandia frutescens on cellular immunity is advised.Item The impact of storage time and seasonal harvesting on biomarker levels of lessertia frutescens(University of Western Cape, 2012) Campbell, James; Mabusela, Wilfred Thozamile; Henkel, RalfIn South Africa, it is estimated that approximately 70% of the population frequently make use of traditional medicinal plants for their health care needs. The use of Lessertia frutescens by the various cultural groups in South Africa dates back to the earlier civilizations and continues to be used today to treat a multitude of ailments. To get the best results from a medicinal plant, one would need to ensure that the crude material is of good quality through interventions like being properly grown, well dried and correctly processed. This would add a measure of quality assurance, which will contribute towards the safety and efficacy aspect of herbal medicine. The aim of this study was to investigate what impact a particular season of harvest and the time in storage would have on the flavonoid and triterpenoid marker levels of Lessertia frutescens. To achieve this, the following was investigated: (1) storage variation of Lessertia frutescens leaves by comparing the results obtained from the High Performance Liquid Chromatography (HPLC) analysis of the flavonoids and triterpenoids, (2) seasonal variation of Lessertia frutescens leaves by comparing the results obtained from the HPLC analysis of the flavonoids and triterpenoids, (3) leaf and stem variation of Lessertia frutescens by comparing the results obtained from HPLC analysis of the flavonoids and triterpenoids. The hypotheses were: (1) the stored sample would indicate the same level of the biomarkers for the flavonoids and triterpenoids, as that of the freshly prepared sample, (2) the sample that was harvested during the summer season would indicate higher levels of the biomarkers of flavonoids and triterpenoids than the other three seasons, (3) the leaf sample would indicate the same level of the biomarkers for the flavonoids and triterpenoids, as that of the stem sample. An Agilent 1200 series HPLC was used for the determination of the flavonoids sutherlandin A and sutherlandin D as well as the triterpenoids sutherlandioside B and sutherlandioside D. Results show that for both sutherlandin A (summer: 3.67 ± 2.88 mg/ml; storage: 4.07 ± 2.88 mg/ml) and D (summer: 4.10 ± 1.06 mg/ml; storage: 4.25 ± 1.06 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the storage samples. For both sutherlandioside B (summer: 3.01 ± 0.39 mg/ml; storage: 2.82 ± 0.39 mg/ml) and D (summer: 5.82 ± 0.42 mg/ml; storage: 4.66 ± 0.42 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the fresh summer samples. For the seasonal comparison, results show that for sutherlandin A (summer: 3.67 ± 12.49 mg/ml; autumn: 4.75 ± 12.49 mg/ml; winter: 4.23 ± 12.49 mg/ml; spring: 6.56 ± 12.49 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the spring sample. For sutherlandin D (summer: 4.10 ± 10.32 mg/ml; autumn: 6.37 ± 10.32 mg/ml; winter: 5.25 ± 10.32 mg/ml; spring; 6.08 ± 10.32 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the autumn sample. For both sutherlandioside B (summer: 3.01 ± 7.19 mg/ml; autumn: 2.15 ± 7.19 mg/ml; winter: 2.89 ± 7.19 mg/ml; spring: 1.47 ± 7.19 mg/ml) and D (summer: 5.82 ± 14.48 mg/ml; autumn: 3.33 ± 14.48 mg/ml; winter: 4.23 ± 14.48 mg/ml; spring: 2.50 ± 14.48 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the autumn sample. For the summer leaf/stem comparison, results show that for sutherlandin A (leaf: 3.67 ± 8.18 mg/ml; stem: 4.67 ± 8.18 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the stem sample. For the sutherlandin D (leaf: 4.10 ± 4.81 mg/ml; stem: 3.31 ± 4.81 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the summer leaf sample. For both the sutherlandioside B (leaf: 3.01 ± 4.24 mg/ml; stem: 3.62 ± 4.24 mg/ml) and D (leaf: 5.82 ± 0.42 mg/ml; stem: 5.80 ± 0.42 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the stem samples.Results demonstrate that the production of secondary metabolites are influenced by environmental factors like seasonal harvesting, as indicated by the variation in the chemical constituent composition of Lessertia frutescens depending on the season collected in. Moreover, the storage of Lessertia frutescens for a period of one year resulted in an increase of two of the four constituents being monitored. There was slight variations in the chemical constituents, depending on whether the leaf or stem material of Lessertia frutescens was being used. Finally, the type of chemical constituent being monitored was also important in the consideration of this study. Therefore, this study can be seen as a starting point to further investigations of these aspects, which are of clinical, pharmacological and economic importance.Item The impact of storage time and seasonal harvesting on biomarker levels of lessertia frutescens(University of Western Cape, 2012) Campbell, James; Mabusela, Wilfred Thozamile; Henkel, RalfIn South Africa, it is estimated that approximately 70% of the population frequently make use of traditional medicinal plants for their health care needs. The use of Lessertia frutescens by the various cultural groups in South Africa dates back to the earlier civilizations and continues to be used today to treat a multitude of ailments. To get the best results from a medicinal plant, one would need to ensure that the crude material is of good quality through interventions like being properly grown, well dried and correctly processed. This would add a measure of quality assurance, which will contribute towards the safety and efficacy aspect of herbal medicine. The aim of this study was to investigate what impact a particular season of harvest and the time in storage would have on the flavonoid and triterpenoid marker levels of Lessertia frutescens. To achieve this, the following was investigated: (1) storage variation of Lessertia frutescens leaves by comparing the results obtained from the High Performance Liquid Chromatography (HPLC) analysis of the flavonoids and triterpenoids, (2) seasonal variation of Lessertia frutescens leaves by comparing the results obtained from the HPLC analysis of the flavonoids and triterpenoids, (3) leaf and stem variation of Lessertia frutescens by comparing the results obtained from HPLC analysis of the flavonoids and triterpenoids. The hypotheses were: (1) the stored sample would indicate the same level of the biomarkers for the flavonoids and triterpenoids, as that of the freshly prepared sample, (2) the sample that was harvested during the summer season would indicate higher levels of the biomarkers of flavonoids and triterpenoids than the other three seasons, (3) the leaf sample would indicate the same level of the biomarkers for the flavonoids and triterpenoids, as that of the stem sample. An Agilent 1200 series HPLC was used for the determination of the flavonoids sutherlandin A and sutherlandin D as well as the triterpenoids sutherlandioside B and sutherlandioside D. Results show that for both sutherlandin A (summer: 3.67 ± 2.88 mg/ml; storage: 4.07 ± 2.88 mg/ml) and D (summer: 4.10 ± 1.06 mg/ml; storage: 4.25 ± 1.06 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the storage samples. For both sutherlandioside B (summer: 3.01 ± 0.39 mg/ml; storage: 2.82 ± 0.39 mg/ml) and D (summer: 5.82 ± 0.42 mg/ml; storage: 4.66 ± 0.42 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the fresh summer samples. For the seasonal comparison, results show that for sutherlandin A (summer: 3.67 ± 12.49 mg/ml; autumn: 4.75 ± 12.49 mg/ml; winter: 4.23 ± 12.49 mg/ml; spring: 6.56 ± 12.49 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the spring sample. For sutherlandin D (summer: 4.10 ± 10.32 mg/ml; autumn: 6.37 ± 10.32 mg/ml; winter: 5.25 ± 10.32 mg/ml; spring; 6.08 ± 10.32 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the autumn sample. For both sutherlandioside B (summer: 3.01 ± 7.19 mg/ml; autumn: 2.15 ± 7.19 mg/ml; winter: 2.89 ± 7.19 mg/ml; spring: 1.47 ± 7.19 mg/ml) and D (summer: 5.82 ± 14.48 mg/ml; autumn: 3.33 ± 14.48 mg/ml; winter: 4.23 ± 14.48 mg/ml; spring: 2.50 ± 14.48 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the autumn sample. For the summer leaf/stem comparison, results show that for sutherlandin A (leaf: 3.67 ± 8.18 mg/ml; stem: 4.67 ± 8.18 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the stem sample. For the sutherlandin D (leaf: 4.10 ± 4.81 mg/ml; stem: 3.31 ± 4.81 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the summer leaf sample. For both the sutherlandioside B (leaf: 3.01 ± 4.24 mg/ml; stem: 3.62 ± 4.24 mg/ml) and D (leaf: 5.82 ± 0.42 mg/ml; stem: 5.80 ± 0.42 mg/ml) show significantly (P < 0.0001) higher concentrations in the case of the stem samples.Results demonstrate that the production of secondary metabolites are influenced by environmental factors like seasonal harvesting, as indicated by the variation in the chemical constituent composition of Lessertia frutescens depending on the season collected in. Moreover, the storage of Lessertia frutescens for a period of one year resulted in an increase of two of the four constituents being monitored. There was slight variations in the chemical constituents, depending on whether the leaf or stem material of Lessertia frutescens was being used. Finally, the type of chemical constituent being monitored was also important in the consideration of this study. Therefore, this study can be seen as a starting point to further investigations of these aspects, which are of clinical, pharmacological and economic importance.Item Isolation and Characterization of Natural Products from Siphonochilus aethiopicus(University of the Western Cape, 2009) Ndiitwani, Dowelani Clement; Mabusela, W.T.Plants have formed the basis of traditional medicinal systems that have been in existence for thousands of years. Traditional medicines play an important role in protecting, maintaining and restoring the health of people. Therefore, information on folk medicinal uses of plants has in latter times received an intense renewed interest as a source in the search for potential new therapeutic agents. The aim of this study was to isolate and identify natural compounds from Siphonochilus aethiopicus which is a species from the Zingiberaceae family and is one of the most popular medicinal plants in South Africa. This species is used extensively in traditional African medicine for pain relief, asthma, coughs, colds, headaches, dysmenorrhoea and influenza. Extraction of leaves and rhizomes were performed sequentially with hexane, dichloromethane, ethyl acetate, methanol and water. The presences of organic compounds were screened using chromatogtaphic techniques. The screening revealed similarities between the leaves and rhizomes extracts which implies that in order to improve the sustainability of the plants only leaves need to be harvested. All HPLC chromatograms except for the methanol extract of leaves have shown prominent peak. Moreover, the HPLC results confirm that same compounds are present in both leaves and rhizomes. The antimicrobial activity of the rhizome aqueous extract was carried out against Gram positive (Staphylococcus aureus, Mycobacterium smegmatis) and Gram negative (Pseudomonas aeruginosa) bacteria as well as fungus (Candida albicans). GC NMR and MS techniques were used for structural elucidation.Item Isolation and Characterization of Natural Products from Siphonochilus aethiopicus(University of the Western Cape, 2009) Ndiitwani, Dowelani Clement; Mabusela, W.T.Plants have formed the basis of traditional medicinal systems that have been in existence for thousands of years. Traditional medicines play an important role in protecting, maintaining and restoring the health of people. Therefore, information on folk medicinal uses of plants has in latter times received an intense renewed interest as a source in the search for potential new therapeutic agents. The aim of this study was to isolate and identify natural compounds from Siphonochilus aethiopicus which is a species from the Zingiberaceae family and is one of the most popular medicinal plants in South Africa. This species is used extensively in traditional African medicine for pain relief, asthma, coughs, colds, headaches, dysmenorrhoea and influenza. Extraction of leaves and rhizomes were performed sequentially with hexane, dichloromethane, ethyl acetate, methanol and water. The presences of organic compounds were screened using chromatogtaphic techniques. The screening revealed similarities between the leaves and rhizomes extracts which implies that in order to improve the sustainability of the plants only leaves need to be harvested. All HPLC chromatograms except for the methanol extract of leaves have shown prominent peak. Moreover, the HPLC results confirm that same compounds are present in both leaves and rhizomes. The antimicrobial activity of the rhizome aqueous extract was carried out against Gram positive (Staphylococcus aureus, Mycobacterium smegmatis) and Gram negative (Pseudomonas aeruginosa) bacteria as well as fungus (Candida albicans). GC NMR and MS techniques were used for structural elucidation.