Browsing by Author "Raitt, Lincoln"
Now showing 1 - 20 of 25
Results Per Page
Sort Options
Item An analysis of primary and secondary production in lake Kariba in a changing climate(University of Western Cape, 2011) Ndebele-Murisa, Mzime R.; Musil, Charles; Raitt, LincolnAnalysis of temperature, rainfall and evaporation records over a 44-year period spanning the years 1964 to 2008 indicates changes in the climate around Lake Kariba. Mean annual temperatures have increased by approximately 1.5oC, and pan evaporation rates by about 25%, with rainfall having declined by an average of 27.1 mm since 1964 at an average rate of 6.3 mm per decade. At the same time, lake water temperatures, evaporation rates, and water loss from the lake have increased, which have adversely affected lake water levels, nutrient and thermal dynamics. The most prominent influence of the changing climate on Lake Kariba has been a reduction in the lake water levels, averaging 9.5 m over the past two decades. These are associated with increased warming, reduced rainfall and diminished water and therefore nutrient inflow into the lake. The warmer climate has increased temperatures in the upper layers of lake water, the epilimnion, by an overall average of 1.9°C between 1965 and 2009. The warmer epilimnion has led to a more stable thermocline in the lake, and its upward migration from a previously reported 20 m depth to the current 2 to 5 m depth reported in the lake’s Sanyati Basin. A consequence of the more stable thermocline has been the trapping of greater amounts of nutrients in the deep, cold bottom waters of the lake, the hypolimnion, and this coupled with a shorter mixing (turnover) period is leading to reduced nutrient availability within the epilimnion. This is evident from a measured 50% reduction in nitrogen levels within the epilimnion, with phosphorus levels displaying a much smaller net decline due to localised sources of pollution inflows into the lake. These changes in lake thermal dynamics and density stratification have reduced the volume of the lake epilimnion by ~50%, which includes the well mixed, oxygenated euphotic zone leading to more acidic waters (lower pH) and increased water ionic concentrations (conductivity), and decreased dissolved oxygen levels, which have resulted in a 95% reduction in phytoplankton biomass and a 57% decline in primary production rates since the 1980s. The reduced nitrogen levels especially have contributed to a proliferation of nitrogen-fixing Cyanophyceae, the dominant Cylindrospermopsis raciborskii comprising up to 66% of the total phytoplankton biomass and 45.6% of the measured total phytoplankton cellular concentrations. Also, shifts in seasonal dominance of different phytoplankton groups have been observed in the lake during turnover, the Cyanophyceae having increased in dominance from 60% of the total phytoplankton biomass in the early 1980’s to the current 75%. In contrast, the Bacillariophyceae have declined substantially, from 18% of the total phytoplankton biomass in the early 1980’s to the current 1.7%. The diminished phytoplankton biomass of more palatable phytoplankton, and the proliferation of smaller, less palatable phytoplankton taxa, has resulted in reduced zooplankton biomass and species richness and altered zooplankton species composition. Concentrations of large Cladocera and Copepoda especially have declined substantially in the lake by up to 93.3% since the mid 1970s, with small Rotifera currently comprising 64% of the total zooplankton biomass. The reductions in zooplankton biomass correspond with recorded decreases in catches per unit effort for the sardine Limnothrissa miodon (Kapenta), which have been steadily declining in the lake since 1986.Item Can bio fortified plants accumulate trace elements essential to the growth and development of humans?(University of the Western Cape, 2013) Müller, Francuois Lloyd F.; Raitt, LincolnMicronutrient and trace element deficiencies are a problem affecting nearly two billion people globally. The people affected the most by these deficiencies are those living in poor and rural communities in the developing countries and thus cannot always afford the diverse diet as advocated by WHO and the FAO. Millions of these people living in the poor and developing countries die yearly, either directly or indirectly, as a result of micronutrient and trace element deficiencies. Thus, this study aimed to determine the nutrient content (Co, Cr, F, I, Se and V) of various vegetable based food items collected from the Cape Town area in the Western Cape Province of South Africa. This was done to determine which vegetable crops provided the highest concentrations of essential trace elements, and how much they contribute to the daily recommended intake (DRIs) of these trace elements. It also aimed to assess the effects of the addition of the trace elements (Co, Cr, F, I, Se, Si, Sn and V) on seed germination and root growth under controlled conditions in order to calculate their phytotoxicity, and then to biofortify four vegetable crop species, grown in sand culture, with a composite treatment of the trace elements to determine how the addition of these elements will affect the vegetable crops grown under these experimental conditions. From this study, it was shown that trace element content in vegetable crops in the Western Cape Province of South Africa varied between different geographic locations and that certain trace elements were absent from several items collected from some areas. Although some crop species contained sufficient amounts of certain trace elements to satisfy our daily recommended intakes, most of the crops were found to contain insufficient amounts of many of the trace elements to satisfy our needs. Leafy vegetables and tubers were identified as the better vegetable types to biofortify with essential trace elements as they already contain higher concentrations of several of the essential trace elements and should thus be assessed for their effectiveness as crops to be biofortified. When the trace elements were applied directly to cress and lettuce seeds, it was found that all the trace elements, as well as the composite treatments, exerted phytotoxic effects on cress and/or lettuce seeds when applied at high concentrations. Lettuce was found to be more prone to the effects of these elements. Seed germination was strongly inhibited by fluoride, while several elements affected root growth. When fluoride was left out of the composite treatment, phytotoxicity only occurred at high concentrations. The addition of the trace elements at the high concentrations to already established spinach, cabbage, lettuce and turnip plants were found to affect the uptake of several essential plant nutrients, but the concentrations of the elements affected generally remained higher than the concentrations needed for adequate growth of agricultural crops. Several of the trace elements supplied to the plants were also found to be retained in the roots of the vegetable crops however, as the concentrations supplied to the plants increased, so did the concentrations found in the edible portions of the crops. Agronomic biofortification of vegetable crops with simultaneous additions of multiple trace elements, under these experimental conditions, was thus considered to be a viable option to increase the concentrations of essential mineral nutrients in the edible portions of vegetable crops. However, these modified nutrient fertilizers should only be given to established crops or without the addition of fluoride. Further research on a wider variety of seeds and vegetable crops, as well as research under field conditions is needed to determine whether these findings remain relevant under these conditions.Item Can biofortified plants accumulate trace elements essential to the growth and development of humans?(University of the Western Cape, 2013) Müller, Francuois Lloyd; Raitt, LincolnThis study aimed to determine the nutrient content (Co, Cr, F, I, Se and V) of various vegetable based food items collected from the Cape Town area in the Western Cape Province of South Africa. This was done to determine which vegetable crops provided the highest concentrations of essential trace elements, and how much they contribute to the daily recommended intake (DRIs) of these trace elements. It also aimed to assess the effects of the addition of the trace elements (Co, Cr, F, I, Se, Si, Sn and V) on seed germination and root growth under controlled conditions in order to calculate their phytotoxicity, and then to biofortify four vegetable crop species, grown in sand culture, with a composite treatment of the trace elements to determine how the addition of these elements will affect the vegetable crops grown under these experimental conditions. From this study, it was shown that trace element content in vegetable crops in the Western Cape Province of South Africa varied between different geographic locations and that certain trace elements were absent from several items collected from some areas. Although some crop species contained sufficient amounts of certain trace elements to satisfy our daily recommended intakes, most of the crops were found to contain insufficient amounts of many of the trace elements to satisfy our needs. Leafy vegetables and tubers were identified as the better vegetable types to biofortify with essential trace elements as they already contain higher concentrations of several of the essential trace elements and should thus be assessed for their effectiveness as crops to be biofortified. When the trace elements were applied directly to cress and lettuce seeds, it was found that all the trace elements, as well as the composite treatments, exerted phytotoxic effects on cress and/or lettuce seeds when applied athighconcentrations. Lettuce was found to be more prone to the effects of these elements. Seed germination was strongly inhibited by fluoride, while several elements affected root growth. When fluoride was left out of the composite treatment, phytotoxicity only occurred at high concentrations. The addition of the trace elements at the high concentrations to already established spinach, cabbage, lettuce and turnip plants were found to affect the uptake of several essential plant nutrients, but the concentrations of the elements affected generally remained higher than the concentrations needed for adequate growth of agricultural crops. Several of the trace elements supplied to the plants were also found to be retained in the roots of the vegetable crops however, as the concentrations supplied to the plants increased, so did the concentrations found in the edible portions of the cropsItem Conservation status of large branchiopods in the Western Cape, South Africa(Springer Verlag, 2007) De Roeck, Els R.; VanSchoenwinkel, Bram J.; Day, Jenny A.; Xu, Yongxin; Raitt, Lincoln; Brendonck, LucTemporary wetlands are an ecologically and economically important habitat in South Africa. They harbor large branchiopods, known to be flagship species of nonpermanent aquatic habitats, and sensitive to land use changes. In this study we review the current status of large branchiopods in the Western Cape, a South African province subject to increasing agriculture and urbanization. We studied the species diversity and distribution of large branchiopods by sampling 58 temporary wetlands in an area covering about 30% of the Western Cape. Information obtained from field samples was supplemented by incubating resting egg banks from the sampled wetlands. Our data were compared with all known distribution records for large branchiopods in the target region. Based on this combined information, the International Union for the Conservation of Nature and Natural Resources (IUCN) Red List category was assessed for each species. Four of the eight large branchiopod species known to occur in the sampling area were collected. Of all wetlands sampled, 40% harbored large branchiopods. Most anostracan populations were small, and species co-occurred in only one wetland. From the entire Western Cape, 14 species have been recorded in the past. Two of these are already included in the IUCN Red List. Insufficient data are available to determine the IUCN Red Data Category of six other species. A large variation in the telsonic appendages of S. dendyi was found across the studied area. In view of possible ongoing speciation and subsequent radiation, individual populations need protection. Since little information is available, it is difficult to evaluate recent changes in the conservation status of large branchiopods. Their populations are currently very low and have probably diminished in the last few decades. More knowledge about the functioning of temporary systems is needed to manage these vulnerable habitats and conserve their threatened species.Item The ecohydrology of the Fransehoek Trust Wetland: water, soils and vegetation.(University of the Western Cape, 2010) Kotzee, Ilse; Raitt, Lincoln; Samson, RoelandThe research was driven by a need to increase the knowledge base concerning wetland ecological responses, as well as to identify and evaluate the factors driving the functioning of the Franschhoek Trust Wetland. An ecohydrological study was undertaken in which vegetation cover, depth to groundwater, water and soil chemistry were monitored at 14 sites along three transects for a 12 month period. The parameters used include temperature, pH, electrical conductivity (EC), sodium, potassium, magnesium, calcium, iron, chloride, bicarbonate, sulphate, total nitrogen, ammonia, nitrate, nitrite and phosphorus. T-tests and Principal Component Analysis (PCA) were used to analyze trends and to express the relationship between abiotic factors and vegetation. Results reflect the strong influence of hydrology, microtopography and nutrient availability in structuring vegetation composition in the wetland. The wetland has been classified as a palustrine valley bottom with channel wetland, which is predominantly groundwater-fed (phreatrotropic), but receives surface water inputs as well. Small scale gradients of microtopography allow for differences in flooding frequency and duration resulting in hydrologically distinct sites which differ chemically. Three zones were distinguished in the wetland. Hollows or low sites were characterized by intermittent flooding and drying and higher nutrient concentrations in soil and groundwater. High sites which were rarely or never flooded exhibited higher groundwater temperature and ammonia as well as iron in soils and groundwater. The inundated sites remained flooded throughout the year and were characterized by high nitrate and nitrite in soil as well as high EC, magnesium, bicarbonate, sulphate and phosphorus in groundwater. The limited availability of nitrogen in the wetland favoured plant types Typha capensis, Paspalum urvillei and Juncus .kraussii which are able to either fix nitrogen or store nitrogen during more favorable conditions. The main chemical concentration changes take place between summer and winter. The Principal Component Analyses suggest that sodium, chloride, potassium, ammonia and phosphorus are the dominant ions determining the chemistry of groundwater. Increased abstraction from the table mountain aquifer to supplement human demand may put the wetland at risk of degradation. Intensified agriculture and other land use in the area are likely to increase pollution loads into the wetland causing shifts in nutrient availability and vegetation composition. Continued and long term monitoring is essential to ensure effective management of the wetland and is highly recommended. Closer partnerships between wetland managers and scientists as well as community awareness and involvement through a volunteer monitoring programme should be encouragedItem The Effects of Cadmium and Lead on Phaseolus vulgaris(University of the Western Cape, 2012) Brandt, Clarissa; Raitt, LincolnThe demand for better quality produce by consumers is on the increase, as higher heavy metal concentrations pose a problem in agriculture. They result in decreased yield and unsuitable food for human consumption. This brings about a negative economic effect as such products become unprofitable on the domestic or export markets thus affecting productivity of farms.Four heavy metals (Cd, Cu, Pb and Zn) have been shown to be a problem in the farming areas in Cape Town. Pot and field studies were carried out on the effects and concentrations of cadmium and lead on Phaseolus vulgaris. Field studies included collecting plant samples from the Joostenbergvlakte/ Kraaifontein farming areas and measuring the heavy metal concentrations within the different organs of the plants. Pot experiments were carried out, where Phaseolus vulgaris var. Contender were grown and then heavy metals were administered to these plants together with two heavy metal mitigation techniques, precipitation with phosphate and mobilisation with EDTA to see if they were successful in combating heavy metal pollution.Samples taken from farms in the Joostenbergvlakte/ Kraaifontein area revealed that cadmium, lead and zinc concentrations were higher than the legal standard in the edible fruits. In the pot experiment, results revealed that cadmium reduced the chlorophyll index as well as the shoot fresh mass and changes in mineral uptake were seen. Lead did not affect growth or the chlorophyll index. The high cadmium treatment resulted in a marked increase in sodium concentration in the shoots. The phosphate treatments and EDTA treatments both resulted in increased cadmium concentrations in the roots and shoots. The higher phosphate and lead treatments also reduced lead concentrations in the roots. Low phosphate and the EDTA treatments increased the shoot sodium concentrations.Item The effects of clipping and burning on the allocation of total nonstructural carbohydrates and selected mineral nutrients in Imperata cylindrica (L.) Raeuschel(University of the Western Cape, 1999) Mitchell, Faghrie; Raitt, Lincoln; Aanbers, JohannesThe rhizomatous grass, Imperata cylindrica, occurs in the Cape Flats Nature Reserve (CFNR), South Africa. It is recognised globally as a weed of crop plants. The response of this weed to defoliation, in the forms of clipping and burning, was studied in terms of its total nonstructural carbohydrates and mineral nutrition. This study will serve as a starting point for later studies aiming to control this weed. It was confirmed that the underground stems or rhizomes serve as the major storage tissue for total nonstructural carbohydrates and mineral nutrients. These rhizomes also make up the largest part of its biomass and hence defoliation was found not to significantly decrease stem total nonstructural carbohydrates or mineral nutrients. The burn treatment induced faster replacement of above ground material than the other defoliation treatments. The burn and basal clipping treatments induced higher leaf nitrogen and phosphorus levels following defoliation. These two treatments also led to significantly higher number of tillers after defoliation and were also the only treatments which induced flowering. The one-off defoliation which was applied at the start of this study, was found to be ineffective in taxing I. cylindrica's resources to the point where it would be vulnerable to eradication. It is hence recommended that future studies on the grass should entail multiple defoliations in order to develop a defoliation regime which will exterminate the grass.Item Empirical and model derived respiration responses to climate in different soils of an arid South African ecosystem(2009) Nyaga, Justine Muhoro; Musil, Charles F.; Raitt, LincolnThis study examined the magnitude of soil CO2 efflux in an arid South African ecosystem, the flux responses as well as those of key limiting nutrients to soil temperature increases and moisture reductions consistent with a future climate change scenario, and compared measured soil respiration rates with those predicted with empirically and theoretically-based soil respiration models. Measurements of soil respiration rate, temperature, moisture, N and P contents were conducted monthly over a 12-month period in natural environments and those artificially manipulated with replicated open-top warming chambers (average 4.1oC increase) and precipitation exclusion chambers (average 30.1% decrease in rainfall, 26.2% decrease in fog and dewfall) distributed in five different soil-vegetation units.Measured soil respiration rates were over 3-fold less than those reported for temperate and tropical forest ecosystems with 61.5% of the total soil CO2 efflux contributed by root respiration (derived from the differences between moderately vegetated and sparsely vegetated areas) in moderately vegetated soils. Massive increases (up to 15 times) in soil CO2 efflux occurred during wet phases, but even these large CO2 pulses were only comparable in magnitude with soil CO2 effluxes reported for temperate semi-arid grasslands. There was considerable intra-annual and inter-site variability in the magnitude and direction of soil respiration and N and P responses to elevated temperatures and reduced precipitation levels with poor correspondence evident between soil CO2 efflux and soil organic matter content. Soil CO2 effluxes declined in response to precipitation exclusion by 7.1% over all sites and increased in response to warming by 42.1% over all sites. The large increase in response to warming was assisted by a 7.5% enhancement in soil moisture content due to precipitation interception by the chamber walls and its channelling to the soil surface.Relatively smaller respiration increases in response to warming occurred in moderately vegetated soils, these attributed to soil thermal insulation by the plant canopy cover. Soil P and N contents increased in response to warming by 11.3% and 13.3% respectively over all sites, with soil P declining in response to precipitation exclusion by 5.8% over all sites and soil N increasing in response to precipitation exclusion over all sites by 5.8%. Standard least squares regressions quantified the relationships between soil respiration rate and measured soil physical and chemical properties, and their interactions for each of the 5 soil-vegetation units. These relationships were incorporated in an empiricallybased soil respiration (EMR) model which was compared with a theoretically based generalized soil respiration model (GRESP). GRESP model functions included measured Q10 coefficients at soil moisture contents above field capacity, these assumed reduced by half for dry conditions, and maximum retentive and field capacities of soils. EMR modelled soil respiration rates displayed slightly better correspondence with measured soil respiration rates than GRESP modelled soil respiration rates. This apparent from the higher regression coefficients and lower sums of squared residuals, with EMR model residuals also more closely approximating normal distributions. However, despite the EMR model’s slight superiority, it was concluded that more precise laboratory-based measurements of soil retentive and field capacities and their Q10 coefficients at different soil moisture contents could improve the GRESP model’s accuracy thereby providing a more convenient and uncomplicated means of predicting respiration responses to current and future climates over a wide range of arid soil typesItem Essential metal and metalloid elements in the Philippi Horticultural area, and their uptake into selected vegetable crops(Taylor & Francis, 2018) Malan, Marÿke; Muller, Francuois; Raitt, Lincoln; Cyster, Lilburne; Brendonck, LucThis study evaluated Co, Cr, Mn, Ni, Se, Sn and V status in the soils of the PHA, as well as the vegetables produced on these soils. We also determined the agronomic sources of these elements to the soils in the PHA. Farmyard manures applied as fertilizer amendments to the soils in the PHA were found to be the major agronomic sources of the metal and metalloid elements. These elements were however, retained in significantly higher concentrations in the soils compared to the concentrations found in the edible portions of the vegetable crops collected. This, in turn, resulted in these vegetables being poor sources of several of the essential mineral nutrients. It is therefore suggested that: (1) a wider variety of crops are assessed for their mineral nutrient status, (2) to find ways to increase the availability of these mineral nutrients and (3), that the possibilities of micronutrient and trace element deficiencies be assessed in the communities surrounding the PHA.Item Groundwater discharges to aquatic ecosystems associated with the Table Mountain Group (TMG) aquifer: a conceptual model(Water Research Commission, 2008) Roets, Wietsche; Xu, Yongxin; Raitt, Lincoln; Brendonck, LucThis paper reports on a conceptual model that was developed to describe the different groundwater discharge ‘types’ from the Table Mountain Group (TMG) aquifer, that contributes to the different components of the flow regime in each of the recognised river reaches for streams and rivers associated with the TMG. This model integrates hydrogeological, ecological and geomorphological understandings into an ecohydrological perspective linking ground- and surface water systems. Through geospatial intersections of existing GIS layers a GIS model was also developed to highlight the quaternary catchments containing sensitive aquatic ecosystems that could be vulnerable to groundwater use from the TMG. The conceptual model demonstrates the intimate link between groundwater from the TMG aquifer and aquatic ecosystems in the mountain and foothill reaches of streams and rivers in the Cape Folded Mountains in particular. It also identifies two primary zones of interaction between groundwater and surface water in the TMG, namely, the ‘TMG aquifer daylight- domain’, located in the recharge zone, and the ‘TMG aquifer surface water interface-domain’, located at the discharge end of the aquifer. The conceptual model clearly indicates the difference between real groundwater, and perceived groundwater contributions to streamflow in the TMG. It is the lower flows of the flow regime that will be most vulnerable to groundwater use from the TMG aquifer in the ‘TMG aquifer daylight-domain’, which are unfortunately also the most important flows from an ecological perspective. However, any groundwater use from the TMG aquifer will also affect the discharge end of the aquifer, located far from the higher elevation recharge areas, or the point of groundwater abstraction, in lowland settings in the ‘TMG aquifer surface water interface-domain’. The GIS model integrated the conceptual understanding into a management tool by highlight all quaternary catchments associated with TMG containing sensitive aquatic ecosystems and gave the variable vulnerability for each.Item Heavy metals in the irrigation water, soils and vegetables in the Philippi horticultural area in the Western Cape Province of South Africa(Springer Verlag, 2014) Malan, M.; Müller, F.; Cyster, L.; Raitt, Lincoln; Aalbers, J.The aims of this study were to investigate the extent of heavy metal contamination in the Philippi horticultural area in the Western Cape Province, South Africa. Concentrations of Cd, Cr, Cu, Mn, Ni, Pb and Zn were determined in the irrigation water, soils and vegetables in both winter and summer cropping seasons with an ICP-AES and tested against certified standards. Differences were found in heavy metal concentrations between the winter and summer cropping seasons in the irrigation water, soils and vegetables. Certain heavy metals exceeded the maximum permissible concentrations in the irrigation water, soils and vegetables produced in South Africa. These toxic concentrations were predominantly found in the summer cropping season for the soils and in the crops produced in winter. It is thus suggested that further studies are carried out in the Philippi horticultural area to determine the sources of the heavy metals to try and mitigate the inputs thereof and therefore reduce the amount of heavy metals entering the human food chain.Item Lichen thermal sensitivities, moisture interception and elemental accumulation in an arid South African ecosystem(University of the Western Cape, 2010) Maphangwa, Khumbudzo Walter; Musil, Charles F.; Raitt, Lincoln; Zedda, Luciana; Faculty of ScienceElevated temperatures accompanying climate warming are expected to have adverse effects on sensitive lichen species. This premise was examined by measuring the sensitivity of different lichen species to elevated temperatures in the laboratory and in the field. Laboratory studies involved the exposure of nine hydrated lichen species (Xanthoparmelia austro-africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta, Teloschistes capensis, Ramalina sp., Flavopuntelia caperata, Lasallia papulosa, Parmotrema austrosinensis) collected from sites of different aridity and mean annual temperature for 2 hourly intervals to temperatures ranging from 24ºC to 48ºC in a forced daft oven and measuring their respiration rates and maximum quantum yield of PSII. Field studies involved simultaneous hourly measurements of ground surface air temperatures and Lichen effective quantum yield of PSII of hydrated lichen species populations under ambient and artificially modified environmental conditions.Item Linking biology and sustainable livelihoods to the proposed establishment of community -based Eucheumoid farming in southern Kenya(University of the Western Cape, 2005) Wakibia, Joseph .G; Keats, Derek; Raitt, Lincoln; Bolton, JohnGrowth rates of three commercial eucheumoids: brown Eucheuma denticulatum and green and brown Kappaphycus alvarezii were studied at three sites (Gazi Bay, Kibuyuni and Mkwiro) in southern Kenya. The study was conducted using the fixed off-bottom rope technique over a 15 month period from August 2001 to October 2002, in 4 plots (5 m x 1.5 m) set up at each site. The brown E. denticulatum had the highest mean growth rate over the entire period of 4.7% day-I compared to the green and brown K. alvarezii which were 4.3% day l and 4.2% dayl, respectively. Mean relative growth rates were highest at Gazi (5.6% dayl), and lowest in Kibuyuni (3.2% day-I) with intermediate values of 4.8% dail at Mkwiro. Increased water motion was observed to increase thallus nitrogen and hence the growth of eucheumoids. The 'ice-ice' syndrome affected both brown E. denticulatum and brown K. alvarezii but not green K. alvarezii. Mean growth was higher during the southeast monsoon (4.7% day+) than during the northeast monsoon (4.0% dayl).The carrageenan characteristics of the three morphotypes were measured for 12 months. The highest carrageenan yield was obtained for green K. alvarezii (59.1% dry wt), whereas the average carrageenan yield for brown K. alvarezii was 56.5% dry wt and 56.6% dry wt for brown E. denticulatum. The plants at Gazi (58.0% dry wt) had a slightly, though significantly, higher carrageenan yield than both those at Kibuyuni (57.1 % dry wt) and Mkwiro (57.3% dry wt). However, from a commercial point of view the differences in carrageenan yields were not meaningful. Highest gel strengths were obtained in carrageenans from green K. alvarezii (1042.1 g cm") and brown K. alvarezii (1053.7 g ern"), whereas low values of 100.8 g ern" were obtained for brown E. denticulatum. The brown E. denticulatum had carrageenan with higher viscosity (81.7 mPa.s) and sulphate content (29.1% dry wt) than both green and brown K. alvarezii. The gel viscosities of all the morphotypes were higher during the southeast monsoon (67.3 mPa.s) than during the northeast monsoon (46.3 mPa.s) and were positively correlated with gel strengths.A survey was conducted among households in the three villages, from April to September 2001 to assess their socio-economic characteristics. There were 182 household heads interviewed; about 20% were women. Fishing was the main source of livelihood for about 48% of the household members. In 2001, the average monthly income for the surveyed households was Kshs. 9904 (1 US$=75 Kshs.), with about 67% having less than Kshs. 10 000. The average prevalence of poverty among the households surveyed was 45.1% with 38.8%,54.8% and 46.7% of households in Gazi, Kibuyuni and Mkwiro villages, respectively, living below the poverty line of Kshs. 1239 per month per adult person. An economic feasibility study for growing brown E. denticulatum and brown K. alvarezii in pilot farms of 0.1 ha was conducted at Gazi and Kibuyuni. A higher yield of 793 kg dry wt was obtained for plants grown at Gazi than those at Kibuyuni (793 kg dry wt). The net income derived from E. denticulatum was estimated at Kshs. 7549 annually in a 0.1 ha seaweed farm. A higher annual income of Kshs. 49 126 was generated from K. alvarezii. The rate of return on investment in farming E. denticulatum ranged from 15 to 63%, while 122 to 380% for K. alvarezii. The pay back period was shorter for the latter (0.3 to 0.7 years) than the former (1.2 to 2.7 years).A cross-sectoral policy analysis regarding legislation and policy relevant to the introduction and development of eucheumoid cultivation in Kenya, with particular reference to Kenyan legislation was conducted. The analysis showed that there is no system of promoting or regulating mariculture, though there are fragmented regulations that are scattered among the policies, Acts and regulations of various institutions. Such regulations were not designed specifically for mariculture and as a result they do not fully address the needs of mariculture. The establishment of a national mariculture development programme in Kenya is proposed as a means to develop and manage the farming of marine resources, including seaweeds.Item Monitoring of heavy metals in the bottelary river using typha capensis and phragmites australis(2005) Ma, Ying; Raitt, LincolnThe aim of this study was to use plants to determine the degree of heavy metal contamination in water and sediments in order to effectively monitor and provide possible recommendation to improve the water quality in the aquatic ecosystem of the Bottelary River.Item Monitoring of heavy metals in the Bottelary River using Typha capensis and Phragmites australis(University of the Western Cape, 2005) Ma, Ying; Raitt, Lincoln; Faculty of ScienceThe aim of this study was to use plants to determine the degree of heavy metal contamination in water and sediments in order to effectively monitor and provide possible recommendation to improve the water quality in the aquatic ecosystem of the Bottelary River.Item Monitoring water quality with riparian trees along the Berg River, Western Cape(University of the Western Cape, 2012) Ruiters, Melissa; Raitt, Lincoln; Samson, RoelandHeavy metals and nutrients have long been regarded as pollutants to freshwater ecosystems. These elements have a detrimental effect on plants, animals and the water quality of rivers in South Africa. The Berg River flows from the mountains of Franschhoek to the West Coast of the Western Cape. It is an important river in Cape Town, as it is essential for water distribution to town, for agriculture and industry and also supports a rich diversity of organisms in the ecosystem. Along the river, many farms and towns are situated and many tributaries enter the river. The Berg River dam provides for a water supply during the drier periods of the year. Therefore it is crucial to maintain a good water quality. The study was driven by the need to increase the knowledge of water quality in the upper Berg River after the construction of a new major Berg River dam, constructed in 2007. This study investigated oxygen, water temperature, electrical conductivity, pH, ammonium, nitrate, nitrite in the water and cadmium, copper, lead, iron, zinc, potassium, sodium, calcium, magnesium and phosphorus found in water, sediment and three plant species at ten sites along the upper Berg River, Western Cape. The results showed that the electrical conductivity, pH and the concentrations of nitrate, calcium and magnesium increased downstream, whereas the water temperature decreased downstream. Nitrate, cadmium, copper, potassium, sodium, calcium and magnesium displayed a general increase towards the colder period in the water. Seasonally, copper and magnesium showed significant winter increase within the sediment. Nitrogen, iron and calcium levels within Salix sp., Acacia mearnsii and Brabejum stellatifolium increased downstream. Nitrogen, cadmium, copper, potassium, calcium, magnesium and phosphorus in the three species were higher in the warmer seasons and decreased in the colder. Sources of pollution stem from the Franschhoek and Dwars tributaries, urban and farm runoff.Item Morphological and physiological responses of Calobota sericea plants subjected to water limitation and subsequent rewatering(Taylor and Francis Group, 2021) Müller, Francuois; Raitt, Lincoln; Cyster, LilburneCalobota sericea is a native legume of South Africa, confined to the water-limited rangelands, and it has recently been prioritised for additional characterisation regarding its pasture potential. In this study, we examined the growth characteristics of C. sericea under glasshouse conditions where water limitation was implemented at different plant ages, and for different durations. Results indicate that preferential resource allocation to the roots, as well as reduced stomatal conductance and transpiration, were early responses to water limitation, irrespective of the age at which water limitation was imposed, or the duration of water limitation. Under water-limited conditions, increased production of protective pigments, such as carotenoids and anthocyanins, was also observed, which helped in recovery after rewatering. It was concluded that after rewatering, all negative impacts of water limitation on morphology and physiology of C. sericea plants were generally returned to well-watered levels. This suggests that C. sericea plants employ a wide range of phenotypic adjustments in response to water limitation, which makes the plants well adapted to areas with high rainfall variability.Item The relevance of fog and dew precipitation to succulent plant hydrology in an arid South African ecosystem(2009) Matimati, Ignatious; Musil, Charles F.; Raitt, Lincoln; February, EdmundFog and dew interception and utilization by plant canopies remains one of the least considered aspects of vegetation studies at any scale yet the few studies that have been conducted point to their considerable influence on ecological processes and a critical role in modulating climate in southern African arid ecosystems. Their relevance to succulent plant hydrology was investigated in this study.The first study measured stable 18O and 2H isotope ratios in samples of rain, fog and dew water and compared these with those assayed monthly in stem xylem water of six succulent shrub species over a one year period. Negative 18O and 2H ratios were observed in the stem xylem water of all six species signifying a predominance of water derived from fog and dew precipitation which was most conspicuous during the wet winter. This implied that fog and dew are even more important sources of water than rain and corroborated by significant correspondence found between fog and dew frequencies, succulent foliar water contents and quantum yields of photochemistry.The second study monitored variations in stem diameter at 2-hourly intervals in 8 succulent shrub species of diverse growth form over a 9-month period. Two groups of species were distinguished based on whether their daily amplitudes in stem diameter were consistently positively correlated with daily fluxes in vapour pressure deficit, which were indicative of a persistent CAM photosynthetic mode, or intermittently correlated with daily fluxes in vapour pressure deficit, which were indicative of mixed CAM and C3 photosynthetic modes. Among species displaying a persistent CAM photosynthetic mode, high nocturnal fog and dew precipitation amounts corresponded with low daily amplitudes in stem diameter, and vice versa, which pointed to reduced nocturnal stomatal water loss. These patterns, which were indistinct among species displaying mixed CAM and C3 photosynthetic modes, were corroborated by small daily amplitudes in stem diameter also consistently observed in one species displaying a CAM photosynthetic mode in ambient than artificially fog and dew excluded environments.The third study monitored changes in water mass at hourly intervals of quartz gravel substrates with different dwarf succulent species assemblages over an 8-month period.Consistently greater net amounts of water were intercepted daily by quartz gravel substrates containing Agyroderma pearsonii than Cephalophylum spissum plants as well as those without plants. These attributed to a high water repellence of A. pearsonii leaves and less radiation absorbed by the paler silvery to grey-green leaves of A. pearsonii leaves than the dark green leaves of C. spissum resulting in lower leaf temperatures and less water loss by transpiration. Quartz gravel soils devoid of plants intercepted nearly 5-times greater amounts of precipitation contributed by fog and dew than that contributed by rain. These precipitation amounts exceeding the high percentages of total hydrological input contributed by fog and dew reported in other ecosystems.The study concludes that fog and dew are a vital source of water for succulent shrubs in arid South African ecosystems and imply that diminished fog and dew frequencies associated with elevated night time temperatures accompanying global warming could exacerbate plant drought stress.Item Salinity of irrigation water in the Philippi farming area of the Cape Flats, Cape Town, South Africa(Water Research Commission, 2013) Aza-Gnandji, Ruben C.D.; Xu, Yongxin; Raitt, Lincoln; Levy, JonathanThis paper explores the nature, source and spatial variation of the salinity of water used for irrigation in a coastal urban farming area in Cape Town, South Africa, where water from the Cape Flats aquifer is drawn into storage ponds and used for crop irrigation. Water samples were collected in summer and winter from selected sites across the study area and were analysed for salinity as well as for concentrations of major and minor ions. Each site consists of one borehole and one pond. Isotope analysis was done for the summer samples so as to assess effects of evaporation on water quality and salinity. Descriptive statistics were used to compare the variation in range of concentration of specific ions with the recommended ranges set by the South African Department of Water Affairs and Forestry (DWAF) and the Food and Agriculture Organisation (FAO). Geographical information system (GIS) analysis was used to describe the spatial distribution of salinity across the study area, and hydro-geochemical analysis was used to assess the possibility of seawater intrusion into the aquifer system and to characterise groundwater in the study area. The results of the research showed that the concentrations of chloride, nitrate, potassium and sodium exceeded the target maximum limit according to DWAF and FAO guidelines. Groundwater and pond water were also observed to be brackish in most parts of the research area in terms of total dissolved salts content, and fresh water was only found in the middle section of the research area. It is concluded that the accumulation of salts in groundwater and soil in the study area is mainly due to the agricultural activities and partially due to the natural movement of water through the geological formation of the Cape Flats region. These findings permit the formulation of a conceptual model of the occurrence of the salinization process, which implies that the groundwater and pond water in the study area are generally suitable for irrigation purposes, but need to be used with caution as the vegetables grown are classified as sensitive and moderately sensitive to salt according to DWAF guidelines for irrigation water quality (1996). The research paves a way for possible quantitative simulation of salt mass balance in future.Item Salt tolerance and modification of wheat salt resistance by plant hormones(University of the Western Cape, 2004) Adam, Muftah Ahmed; Raitt, Lincoln; Aalbers, JohannesThe history of salt tolerance and the factors effecting salt resistance of plants were literature surveyed, and it was concluded that ion concentration, salt accumulation, compatible solutes and the genetic traits play a major role in the salt tolerance of plants. Differences in salt resistance of wheat cultivars were investigated at the germination and early seedling stages. Considerable intervarietal differences in salt resistance between wheat cultivars were reported. The interaction between salinity and plant hormones was studied and showed that N6- benzyladinin treatments caused some changes in some parameters that were studies, GA3 treatments showed more effects on these parameters of salt stressed plants. This study showed that the treatment with some organic acids, citric acid and malic acid, did not cause significant changes in the parameters measured of the wheat plants. No effects on seed germination were due to the decreases in the pH value due to the GA3 treatment were found. The study concludes that treatment of salt stressed wheat cultivars with GA3 could alleviate some of harmful effects of high salt levels, and that it could be useful to treat plants grown in brackish soil or saline environment.