Browsing by Author "Pollet, Bruno G."
Now showing 1 - 20 of 20
Results Per Page
Sort Options
Item A new route to control texture of materials: Nanostructured ZnFe2O4 photoelectrodes(2013) Tahir, Asif Ali; Burch, Henry A.; Wijayantha, K.G. Upul; Pollet, Bruno G.Studies were conducted to investigate the influence of deposition solution composition (methanol ≤ the deposition solvent ≤ ethanol) on their physical and chemical properties that matters in the aerosol formation and subsequent decomposition during the aerosol assisted chemical vapour deposition (AACVD) of ZnFe2O4 electrodes. The FEGSEM studies found that the change of composition of deposition solution produced a dramatic change in the ZnFe2O4 electrode texture. The ZnFe2O4 electrodes deposited from methanol as well as predominately methanolic solvents had a relatively compact morphology. In contrast, the electrodes deposited from ethanol as well as predominately ethanolic solvents showed highly textured rod-like structure at nanoscale. The change in electrode texture is explained in terms of changes occurred in precursor decomposition pathways from heterogeneous and homogeneous when the composition of deposition solution is systematically varied. The photoelectrochemical (PEC) properties of all ZnFe2O4 electrodes were studied by recording JeV characteristics under AM1.5 illumination and the photocurrent spectra. The textured electrodes exhibited a significantly higher photocurrent compared to their compact counterparts. This is attributed to the improved photogenerated minority carrier collection at the ZnFe2O4/electrolyte interface as the average feature size gradually decreased. The photocurrent density (at 0.25 V vs. Ag/AgCl/3M KCl) increases rapidly when the electrode is deposited from the solvent containing 60% ethanol and above, which is in close agreement with the textural changes taken place in ZnFe2O4 electrodes.Item Application of surface-modified metal hydrides for hydrogen separation from gas mixtures containing carbon dioxide and monoxide(Elsevier, 2013) Lototskyy, Mykhaylo; Modibane, K.D.; Williams, M.; Klochko, Ye.; Linkov, Vladimir; Pollet, Bruno G.Application of surface-modified MH material for H2 separation using temperature/pressure swing absorption–desorption was studied. The substrate alloy had the following composition LaNi3.55Co0.75Al0.4-Mn0.3, and the surface modification was carried out through fluorination followed by aminosilane functionalization and electroless deposition of Pd. The material was found to have good poisoning tolerance towards surface adsorbates, even for the large (rv1.5 kg) batches. Feasibility of its application for H2 separation from gas mixtures (up to 30% CO2 and 100 ppm CO) was demonstrated by testing of a prototype H2 separation system (rv280 g of MH in two reactors), and H2 separation reactor (0.75 kg of MH). The H2 separation was characterized by stable performances in the duration of 250 absorption/desorption cycles. However, the total process productivity was found to be limited by the sluggish H2 absorption (partial H2 pressure 62.5 bar, temperature below 100 °C). In the presence of CO2 and CO, additional deceleration of H2 absorption was observed at space velocities of the feed gas below 5000 hItem Characterization and activity test of commercial Ni/Al2O3, Cu/ZnO/Al2O3 and prepared NieCu/Al2O3 catalysts for hydrogen production from methane and methanol fuels(Elsevier, 2013) Khzouz, Martin; Wood, Joe; Pollet, Bruno G.; Bujalski, WaldemarIn this study, methane and methanol steam reforming reactions over commercial Ni/Al2O3, commercial Cu/ZnO/Al2O3 and prepared NieCu/Al2O3 catalysts were investigated. Methane and methanol steam reforming reactions catalysts were characterized using various techniques. The results of characterization showed that Cu particles increase the active particle size of Ni (19.3 nm) in NieCu/Al2O3 catalyst with respect to the commercial Ni/ Al2O3 (17.9). On the other hand, Ni improves Cu dispersion in the same catalyst (1.74%) in comparison with commercial Cu/ZnO/Al2O3 (0.21%). A comprehensive comparison between these two fuels is established in terms of reaction conditions, fuel conversion, H2 selectivity, CO2 and CO selectivity. The prepared catalyst showed low selectivity for CO in both fuels and it was more selective to H2, with H2 selectivities of 99% in methane and 89% in methanol reforming reactions. A significant objective is to develop catalysts which can operate at lower temperatures and resist deactivation. Methanol steam reforming is carried out at a much lower temperature than methane steam reforming in prepared and commercial catalyst (275-325 o C). However, methane steam reforming can be carried out at a relatively low temperature on NieCu catalyst (600-650 o C) and at higher temperature in commercial methane reforming catalyst (700-800 o C). Commercial Ni/Al2O3 catalyst resulted in high coke formation (28.3% loss in mass) compared to prepared NieCu/Al2O3 (8.9%) and commercial Cu/ZnO/Al2O3 catalysts (3.5%).Item Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique(Elsevier, 2013) Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 o C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H /air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.Item Fuel cell-battery hybrid powered light electric vehicle (golf cart): Influence of fuel cell on the driving performance(Elsevier, 2013) Tolj, Ivan; Lototskyy, Mykhaylo; Davids, Moegamat Wafeeq; Pasupathi, Sivakumar; Swart, Gerhard; Pollet, Bruno G.A light electric vehicle (golf cart, 5 kW nominal motor power) was integrated with a commercial 1.2 kW PEM fuel cell system, and fuelled by compressed hydrogen (two composite cylinders, 6.8 L/300 bar each). Comparative driving tests in the battery and hybrid (battery þ fuel cell) powering modes were performed. The introduction of the fuel cell was shown to result in extending the driving range by 63-110%, when the amount of the stored H2 fuel varied within 55-100% of the maximum capacity. The operation in the hybrid mode resulted in more stable driving performances, as well as in the increase of the total energy both withdrawn by the vehicle and returned to the vehicle battery during the driving. Statistical analysis of the power patterns taken during the driving in the battery and hybrid-powering modes showed that the latter provided stable operation in a wider power range, including higher frequency and higher average values of the peak power.Item High temperature (HT) polymer electrolyte membrande fuel cells (PEMFC) - A review(Elsevier, 2013) Chandan A, Hattenberger M,Pollet BG and 6 other; Chandan, Amrit; Hattenberger, Mariska; El-kharouf, Ahmad; Du, Shangfeng; Dhir, Aman; Self, Valerie; Pollet, Bruno G.; Ingram, Andrew; Bujalski, WaldemarOne possible solution of combating issues posed by climate change is the use of the High Temperature (HT) Polymer Electrolyte Membrane (PEM) Fuel Cell (FC) in some applications. The typical HT-PEMFC operating temperatures are in the range of 100e200 o C which allows for co-generation of heat and power, high tolerance to fuel impurities and simpler system design. This paper reviews the current literature concerning the HT-PEMFC, ranging from cell materials to stack and stack testing. Only acid doped PBI membranes meet the US DOE (Department of Energy) targets for high temperature membranes operating under no humidification on both anode and cathode sides (barring the durability). This eliminates the stringent requirement for humidity however, they have many potential drawbacks including increased degradation, leaching of acid and incompatibility with current state-of-the-art fuel cell materials. In this type of fuel cell, the choice of membrane material determines the other fuel cell component material composition, for example when using an acid doped system, the flow field plate material must be carefully selected to take into account the advanced degradation. Novel research is required in all aspects of the fuel cell components in order to ensure that they meet stringent durability requirements for mobile applications.Item Hydrogen absorption study of high-energy reactive ball milled Mg composites with palladium additives(Elsevier, 2013) Williams, M.; Sibanyoni, J.M.; Lototskyy, Mykhaylo; Pollet, Bruno G.Hydrogenation behaviour, structure, morphology and dehydrogenation/re-hydrogenation performances of Mg–Pd nanocomposites prepared by high-energy reactive ball milling in H2 (HRBM) of Mg in the presence of amorphous and crystalline Pd black (0.1–5 wt.%) were studied. Improvements of hydrogenation kinetics during HRBM were observed only for the materials prepared using crystalline Pd black. The obtained nanocomposites were characterised by modest improvements in their dehydrogenation and re-hydrogenation performances associated with the formation of Mg–Pd intermetallides.Item Magnesium–carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen(Elsevier, 2013) Lototskyy, Mykhaylo; Sibanyoni, J.M.; Denys, R.V.; Williams, M.; Pollet, Bruno G.; Yartys, V.A.Time-resolved studies uncovered kinetics and mechanism of Mg–hydrogen interactions during High energy reactive ball milling in hydrogen (HRBM) in presence of various types of carbon, including graphite (G), activated carbon (AC), multi-wall carbon nanotubes (MWCNT), expandable (EG) and thermally-expanded (TEG) graphite. Introduction of carbon significantly changes the hydrogenation behaviour, which becomes strongly dependent on the nature and amount of carbon additive. For the materials containing 1 wt.% AC or TEG, and 5 wt.% MWCNT, the hydrogenation becomes superior to that for the individual magnesium and finishes within 1 h. Analysis of the data indicates that carbon acts as a carrier of the ‘‘activated’’ hydrogen by a mechanism of spill-over. For Mg–G the hydrogenation starts from an incubation period and proceeds slower. An increase in the content of EG and TEG above 1 wt.% results in the deterioration of the hydrogenation kinetics. The effect of carbon additives has roots in their destruction during the HRBM to form graphene layers encapsulating the MgH2 nanoparticles and preventing the grain growth. This results in an increase of absorption–desorption cycle stability and a decrease of the MgH2 crystallite size in the re-hydrogenated Mg–C hybrid materials (40–125 nm) as compared to Mg alone (180 nm).Item Nafion-stabilised platinum nanoparticles supported on titanium nitride: An efficient and durable electrocatalyst for phosphoric acid based polymer electrolyte fuel cells(Elsevier, 2013) Kumar, Ravi; Pasupathi, Sivakumar; Pollet, Bruno G.; Scott, KeithNafion derived platinum nanoparticles were produced and successfully anchored on titanium nitride (TiN) support (Pt/TiN) and its suitability for phosphoric acid based polymer electrolyte membrane fuel cells is reported. Electrochemical cycling of Nafion stabilised Pt/TiN electrocatalyst exhibits good stability, durability and better electrocatalytic activity than the traditionally employed carbon supported Pt (Pt/C). Platinum supported on TiN exhibits better oxygen reduction reaction (ORR) activity as compared to carbon black (Vulcan XC 72). Nafion stabilised Pt/TiN shows a positive shift of 20 mV in half-wave potential measured from ORR polarisation curve in relation to Pt/C. Nafion stabilised Pt/TiN shows approximately two-fold increase in mass and specific activities than the Pt/C calculated from ORR data at 0.9 V. The improved durability of Pt/TiN catalyst arises from Nafion layer surrounding the Pt nanoparticles and corrosion resistant TiN support. Transition metal nitride based electrocatalysts are more active for cathode due to synergistic effect, which is observed in oxygen reduction reaction.Item Optimisation of electrophoretic deposition parameters for gas diffusion electrodes in high temperature polymer electrolyte membrane fuel cells(Elsevier, 2013) Felix, Cecil; Jao, Ting-Chu; Pasupathi, Sivakumar; Pollet, Bruno G.Electrophoretic deposition (EPD) method was used to fabricate gas diffusion electrodes (GDEs) for high temperature polymer electrolyte membrane fuel cells (HT PEMFC). Parameters related to the catalyst suspension and the EPD process were studied. Optimum suspension conditions are obtained when the catalyst particles are coated with Nafion® ionomer and the pH is adjusted to an alkaline range of about 8 e10. These suspensions yield good stability with sufficient conductivity to form highly porous catalyst layers on top of the gas diffusion layers (GDLs). GDEs were fabricated by applying various electric field strengths of which 100 V cm-1 yields the best membrane electrode assembly (MEA) performance. Compared to an MEA fabricated by the traditional hand sprayed (HS) method, the EPD MEA shows superior performance with a peak power increase of about 73% at similar platinum (Pt) loadings. Electrochemical Impedance Spectroscopy (EIS) analysis shows lower charge transfer resistance for the MEA fabricated via the EPD method compared to the HS MEA. The EPD GDE exhibits a greater total pore area (22.46 m2 g-1) compared to the HS GDE (13.43 m2 g-1) as well as better dispersion of the Pt particles within the catalyst layer (CL).Item Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer(Elsevier, 2013) Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.Gas diffusion electrodes (GDEs) prepared with various polymer binders in their catalyst layers (CLs) were investigated to optimize the performance of phosphoric acid doped polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cells (HT-PEMFCs). The properties of these binders in the CLs were evaluated by structure characterization, electrochemical analysis, single cell polarization and durability test. The results showed that polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF) are more attractive as CL binders than conventional PBI or Nafion binder. At ambient pressure and 160 o C, the maximum power density can reach w 0.61 W cm-2 (PTFE GDE), and the current density at 0.6 V is up to ca. 0.52 A cm-2 (PVDF GDE), with H2/air and a platinum loading of 0.5 mg cm-2 on these electrodes. Also, both GDEs showed good stability for fuel cell operation in a short term durability test.Item Poisoning-tolerant metal hydride materials and their application for hydrogen separation from CO2/CO containing gas mixtures(Elsevier, 2013) Modibane, K.D.; Williams, M.; Lototskyy, Mykhaylo; Davids, M.W.; Klochko, Ye.; Pollet, Bruno G.Metal hydride materials offer attractive solutions in addressing problems associated with hydrogen separation and purification from waste flue gases. However, a challenging problem is the deterioration of hydrogen charging performances resulting from the surface chemical action of electrophilic gases. In this work, the feasibility study of poisoning tolerance of surface modified AB5-type hydride forming materials and their application for hydrogen separation from process gases containing carbon dioxide and monoxide was carried out. Target composition of La(Ni,Co,Mn,Al)5 substrate was chosen to provide maximum reversible hydrogen capacity at the process conditions. The selected substrate alloy has been shown to be effectively surface-modified by fluorination followed by electroless deposition of palladium. The surface-modified material exhibited good coating quality, high cycle stability and minimal deterioration of kinetics of selective hydrogen absorption at room temperature, from gas mixtures containing 10% CO2 and up to 100 ppm CO. The experimental prototype of a hydrogen separation unit, based on the surface-modified metal hydride material, was tested and exhibited stable hydrogen separation and purification performances when exposed to feedstocks containing concentrations of CO2Item Pt decorated amorphous RuIr alloys as high efficiency electrocatalyst for methanol oxidation(The Electrochemical Society, 2012) Ma, Y.J.; Wang, H.; Ji, Shan; Pollet, Bruno G.; Wang, R.F.This study focuses primarily on improving the utilization and activity of anodic catalysts for methanol electro-oxidation. The Direct Methanol Fuel Cell (DMFC) anodic catalyst, a carbon supported Pt decorated amorphous RuIr nanoparticles catalyst (Pt@RuIr/C) was prepared by a two-step reduction method. The structure of Pt@RuIr/C nanoparticles was confirmed by Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). The Pt@RuIr electrocatalysts exhibited good uniformity in distribution. Cyclic Voltammetry experiments showed that under the same quality of noble-metal, the Pt@RuIr/C catalyst had higher activity than the PtRuIr/C catalyst for methanol oxidation. It was also shown that the as-prepared structure of the Pt decorated amorphous RuIr alloys could obviously decrease the usage of noble-metal and enhance its catalytic activity at the same time.Item Pt-Sn/C as a possible methanol-tolerant cathode catalyst for DMFC(Springer Verlag, 2013) Martin, Lynwill G.; Green, Ivan; Wang, X.; Pasupathi, Sivakumar; Pollet, Bruno G.An effective method was developed for preparing highly dispersed nano-sized Pt–Sn/C electrocatalyst synthesised by a modified polyol reduction method. From XRD patterns, the Pt–Sn/C peaks shifted slightly to lower 2θ angles when compared with commercial Pt/C catalyst, suggesting that Sn formed alloy with Pt. Based on HR-TEM images, the Pt–Sn/C nanoparticles showed small particle sizes and well dispersed onto the carbon support with a narrow particle distribution. The methanol oxidation reaction on the as-prepared Pt–Sn/C catalyst appeared at lower currents (+7.08 mA at +480 mV vs. Ag/AgCl) compared to the commercial Pt/C (+8.25 mA at +480 mV vs. Ag/AgCl) suggesting that the Pt–Sn/C catalyst has ‘methanol tolerance capabilities’. Pt–Sn/C HA Slurry pH3 catalysts showed better activity towards the oxygen-reduction reaction (ORR) than commercial Pt/C which could be attributed to smaller particle sizes. In our study, the Pt–Sn/C catalyst appears to be a promising methanol-tolerant catalyst with activity towards the ORR in the DMFC.Item RuxNb1-xO2 catalyst for the oxygen evolution reaction in proton exchange membrane water electrolysers(Elsevier, 2013) Puthiyapura, Vinod Kumar; Pasupathi, Sivakumar; Basu, Suddhasatwa; Wu, Xu; Su, Huaneng; Varagunapandiyan, N.; Pollet, Bruno G.; Scott, KeithBimetallic catalyst system of ruthenium oxide (RuO2) and niobium oxide (Nb2O5) was prepared using the Adams method and the hydrolysis method. Physical and electrochemical characterizations of the catalysts were studied using X-ray diffraction (XRD), Scanning electron microscopy (SEM), cyclic voltammogram (CV) and polarization measurements. Nb2O5 addition to RuO2 was found to increase the stability of RuO2. In Adams method the sodium nitrate was found to be forming complex with Nb2O5 at high temperature reaction. This makes Adams method unsuitable for the synthesis of RuO2eNb2O5 bimetallic system. Hydrolysis method on other hand does not have this problem. But a proper mixture of two oxides was not obtained in hydrolysis method. A lower crystallite size for bimetallic system was obtained with Adams method compared to hydrolysis method. RuO2 prepared by Adams method had higher activity compared to the hydrolysis counterpart in electrolyzer operation with nafion membrane. A cell voltage of 1.62 V was obtained with RuO2 (A) at 1 A/cm2. A higher stability for Ru0.8Nb0.2O2(A) compared to RuO2Item Scaling factors for channel width variations in treelike flow field patterns for polymer electrolyte membrane fuel cells - An experimental study(Elsevier, 2021) Sauermoser, Marco; Pollet, Bruno G.; Kizilova, NatalyaTo have a uniform distribution of reactants is an advantage to a fuel cell. We report results for such a distributor with tree-like flow field plates (FFP). Numerical simulations have shown that the width scaling parameters of tree-like patterns in FFPs used in polymer electrolyte membrane fuel cells (PEMFC) reduces the viscous dissipation in the channels. In this study, experimental investigations were conducted on a 2-layer FF plate possessing a tree-like FF pattern which was CNC milled on high-quality graphite. Three FF designs of different width scaling parameters were employed. IeV curves, power curves and impedance spectra were generated at 70%, 60% and 50% relative humidity (25 cm2 active area), and compared to those obtained from a conventional 1-channel serpentine FF. It was found that the FF design, with a width scaling factor of 0.917 in the inlet and 0.925 in the outlet pattern, exhibited the best peak power out of the three designs (only 11% - 0.08 W/cm2 lower than reference serpentine FF). Results showed that a reduction of the viscous dissipation in the flow pattern was not directly linked to a PEMFC performance increase.Item Supported 3-D Pt nanostructures: the straightforward synthesis and enhanced electrochemical performance for methanol oxidation in an acidic medium(Springer, 2013) Li, Zesheng; Ji, Shan; Pollet, Bruno G.; Shen, Pei KangNoble metal nanostructures with branched morphologies [i.e., 3-D Pt nanoflowers (NFs)] by tridimensionally integrating onto conductive carbon materials are proved to be an efficient and durable electrocatalysts for methanol oxidation. The well-supported 3-D Pt NFs are readily achieved by an efficient cobalt-induced/carbon-mediated galvanic reaction approach. Due to the favorable nanostructures (3-D Pt configuration allowing a facile mass transfer) and supporting effects (including framework stabilization, spatially separate feature, and improved charge transport effects), these 3-D Pt NFs manifest much higher electrocatalytic activity and stability toward methanol oxidation than that of the commercial Pt/C and Pt-based electrocatalysts.Item Synthesis and characterization of pt-sn/c cathode catalysts via polyol reduction method for use in direct methanol fuel cell(2013) Martin, Lynwill Garth; Green, Ivan R.; Pollet, Bruno G.Direct methanol fuel cells (DMFCs) are attractive power sources as they offer high conversion efficiencies with low or no pollution. One of the major advantages DMFCs has over PEMFCs is that methanol is a liquid and can be easily stored where in the case for PEMFCs storing hydrogen requires high pressures and low temperatures. However, several challenging factors especially the sluggish oxygen reduction reaction (ORR) and the high cost of Pt catalysts, prolong their commercialization. With the aim to search for more active, less expensive more active ORR catalysts and methanol tolerant catalysts than pure Pt, this dissertation focuses on the development of low loading Pt electrocatalyst and the understanding of their physical and electrochemical properties. Pt-Sn/C electrocatalsyts have been synthesized by a modified polyol reduction method. The effect of temperature, pH, water, sonication and addition of carbon form were studied before a standard polyol method was established. From XRD patterns, the Pt-Sn/C peaks shifted slightly to lower 2Ө angles when compared with commercial Pt/C catalyst, suggesting that Sn is alloying with Pt. Based on HRTEM data, the Pt-Sn/C nanoparticles showed small particle sizes well-dispersed onto the carbon support with a narrow particle distribution. The particle sizes of the different as-prepared catalysts were found to be between 2-5 nm. The Pt-Sn/C HA Slurry pH3 catalysts was found to be the best asprepared catalyst and was subjected to heat-treatment in a reducing atmosphere at 250-600 °C which led to agglomeration yielding nanoparticles of between 5-10 nm. The Methanol Oxidation Reaction (MOR) on the as-prepared Pt-Sn/C HA Slurry pH3 catalyst appeared at lower currents (+7.11 mA at 860 mV vs. NHE) compared to the commercial Pt/C (+8.25 mA at +860 mV vs. NHE) suggesting that the Pt-Sn/C catalyst has „methanol tolerance capabilities‟. Pt-Sn/C HA Slurry pH3 and Pt-Sn/C 250 °C catalysts showed better activity towards the ORR than commercial Pt/C with specific and mass activities higher than Pt/C at +0.85 V vs NHE. The Tafel slopes of Pt-Sn/C HA Slurry pH3 catalyst was -62 and -122 mV dec-1 for the low and high current regions respectively and suggests that the ORR mechanism is similar to that of commercial Pt/C indicating that the ORR kinetics was not negatively influenced by the addition of tin. It was found that the electrochemical oxidation reduction reaction follows first order kinetics of a multi-electronic (n=4ē) charge transfer process producing water. All the Pt-Sn/C catalysts showed resistance towards MOR and it was found for the heat-treated catalysts that an increase in temperature resulted in an increase in methanol tolerance. The synthesized Pt-Sn/C HA Slurry pH3 catalysts were also tested in a fuel cell environment. Electrodes were prepared by either spraying on Toray carbon paper with the Asymtek machine or by VI spraying directly on the membrane with a hand spray gun the catalysts coated membrane (CCM) technique. Polarization curves obtained in DMFC with CCM showed superior performance than electrode prepared by spraying on the carbon paper with the machine. In our study, the Pt-Sn/C catalyst appears to be a promising methanol tolerant catalyst with activity towards the ORR in the DMFC.Item Thermal conductivity and temperature profiles of the micro porous layers used for the polymer electrolyte membrane fuel cell(Elsevier, 2013) Burheim, Odne S.; Su, Huaneng; Pasupathi, Sivakumar; Pharoah, Jon G.; Pollet, Bruno G.The thermal conductivity and the thickness change with pressure of several different micro porous layers (MPL) used for the polymer electrolyte membrane fuel cell (PEMFC) were measured. The MPL were made with different compositions of carbon and polytetrafluoroethylene (PTFE). A one-dimensional thermal PEMFC model was used to estimate the impact that the MPL has on the temperature profiles though the PEMFC. The thermal conductivity was found to vary from as low as 0.05 up to as high as 0.12 W K 1 m 1 while the compaction pressure was varied from 4 bar and up to around 16 bar resulting in a decrease in thickness of approximately 40%. The PTFE content, which varied between 10 and 25%, did not result in any significant change in the compression or thermal conductivity. Both the thickness and the thermal conductivity changed irreversibly with compaction pressure. Considering a MPL thermal conductivity of 0.1 W K 1 m 1, a MPL thickness of 45 mm, a current density of 10 kAm 2 (1.0 A cm 2), liquid water (production and sorption), and a 30 mm membrane it was found that the MPL is responsible for a temperature increase of up to 2 C. This contribution can be lowered by integrating the MPL into the porous transport layer.Item Validation of an externally oil-cooled 1 kWel HT-PEMFC stack operating at various experimental conditions(Elsevier, 2013) Bujlo, P.; Pasupathi, Sivakumar; Ulleberg, Ø.; Scholta, J.; Nomnqa, M.V.; Rabiu, A.; Pollet, Bruno G.The performance of 1 kWel 48-cell HT-PEMFC at various experimental conditions is presented, particularly at several CO concentrations (up to 1.0%). Polarization curves measured at various anode (1.0-2.5) and cathode (1.6-4.0) stoichiometries; stack operating temperatures (120-160 o C) and gas pressures (up to 0.5 barg) arereported and analysed. The minimum gas stoichiometries of 1.25 and 2.0 were determined for the anode and cathode, respectively. The highest stack power density of 225 mW cm-2 was measured at 160 o C and 0.4 A cm-2. Operation at COconcentrations up to 1% was achieved, although a loss of performance of about 4% was observed for low CO concentrations. The operating temperature enhanced fuel cell performance and tolerance to CO, even when supplied with higher CO concentration in the anode feed gas.