Fabrication of silver‑coated PET track‑etched membrane as SERS platform for detection of acetaminophen

Abstract

In this study, silver nanoparticles (AgNPs) were immobilized on the surface of polyethylene terephthalate (PET) membrane using diethylenetriamine (DETA) as a chemical linker. The molecule of DETA was attached to the surface of PET via an amide bond following scission of the polyester ester bond on the PET surface. The AgNPs were immobilized on the surface of diethylenetriamine-modifed PET membrane via a silver-nitrogen covalent bond. The silver-coated, DETA-modifed and unmodifed PET membranes were characterized by Fourier transform infrared (FTIR), x-ray photoelectron spectroscopy (XPS), ulltraviolet-visible spectroscopy (UV–Vis), and scanning electron microscopy (SEM). The results showed that the size of AgNPs also increased with time of immobilization. The percentage of elemental silver also increased with increase in time of immobilization of AgNPs on the surface of DETA-modifed PET membrane. The AgNP-coated PET membrane was used as SERS platform to detect acetaminophen in water. The SERS results showed that acetaminophen molecules could be detected with high Raman scattering intensity arising from adsorption of acetaminophen molecules on the silver nanoparticles of the SERS platform.

Description

Keywords

Polyethylene terephthalate, Silver nanoparticles, Surface modifcations, Acetaminophen

Citation

Ndilowe, G.M et al. (2021). Fabrication of silver-coated PET track-etched membrane as SERS platform for detection of acetaminophen. Colloid and Polymer Science. 1-13. 10.1007/s00396-021-04900-y.