The influence of mixing ratio on the fatigue behaviour of fibre reinforced polymers
dc.contributor.advisor | Geerts, Greta | |
dc.contributor.author | Stuhlinger, Martin Ernst | |
dc.date.accessioned | 2016-06-02T14:16:27Z | |
dc.date.accessioned | 2024-04-15T13:07:39Z | |
dc.date.available | 2016-06-02T14:16:27Z | |
dc.date.available | 2024-04-15T13:07:39Z | |
dc.date.issued | 2013 | |
dc.description | Magister Scientiae Dentium - MSc(Dent) | en_US |
dc.description.abstract | Statement of the problem: Fibre reinforcement of polymethyl methacrylate (PMMA) denture base material is known to improve the strength, as well as the fatigue behavior, of the material. The powder liquid (P/L) ratio of PMMA is often changed to modify the handling properties of the material. Little is known about the effect of this deviation from manufacturer’s guidelines on the fatigue behaviour of the fibre reinforced product. Purpose: This study compared the flexural strength (FS) of PMMA reinforced with glass fibre using different P/L ratios, before and after cyclic loading. Methods and materials: Three groups, with 50 glass fibre reinforced (everStick nonimpregnated fibers) heat-cured PMMA resin (Vertex Rapid Simplified) specimens each, were prepared using a custom-made template (dimensions 10x9x50mm). Each group had a different P/L ratio: the control group (100%) had the manufacturer’s recommended ratio; the 90% and 80% groups had reduced P/L ratios (by weight).Twenty five specimens from each group were subjected to a 3-point bending compression test using a universal testing machine. The remaining 25 specimens from each group were subjected to cyclic loading (104 cycles) before compression testing. The (FS) was calculated using the highest force (Fmax) before specimen failure. Flexural strength was calculated using the equation: FS=3WL/2bd2. Within each group, median FS values before and after cyclic loading were compared by means of a non-parametric analysis of variance. The Aligned Ranks Transform method was used for the analysis. Statistical significance was set at p=0.05. Results: The Fmax (N) of the control (100%), 90% and 80% groups fatigued and unfatigued were 100%: 1665 (fat), 1465 (unfat); 90%: 1679 (fat), 1548 (unfat) and 80%: 1585 (fat), 1467 (unfit) respectively. There was no significant interaction between Mix ratio and Fatigue state, and the 80% mix had a significantly higher mean than either the 90% or 100% mix (with differences of about 0.3 units for both). The Fatigued state had a higher mean than the Un- fatigued state by about 6.0 units. Using FS (MPa) it was found that the fatigued 80% mix specimens had the highest value. The FS MPa of the control (100%), 90% and 80% groups fatigued and un-fatigued were 64.3, 60.6; 66.9, 65.6 and 70.2, 69.3 respectively. The fact that fatiguing strengthened the specimens merits further research. When observing the broken specimens it was found that there was a complete debonding of the fibres and the PMMA. Conclusion and clinical relevance: a) Fibre: The benefit of using glass fibre bundles to reinforce prostheses fabricated using heat cured PMMA is questionable due to problems with bonding between the fibre bundles and the heat cured PMMA resin. b) Fatiguing: An average person chews 107 times during a 3 year period. A limited period of average masticatory forces should not have a detrimental effect on prostheses made from heat cured PMMA resin. c) Mix ratio: Within the normal parameters of laboratory techniques the mix ratio of PMMA resin had no significance on the fracture resistance of the prostheses. Due to the high cost of the fibres used for the reinforcement and the limited success and insignificant results achieved in this study, this researcher cannot recommend using Stickbond or Stick fibers for the reinforcement of dentures made with heat cured PMMA resin. | en_US |
dc.identifier.uri | https://hdl.handle.net/10566/10885 | |
dc.language.iso | en | en_US |
dc.publisher | University of the Western Cape | en_US |
dc.rights.holder | University of the Western Cape | en_US |
dc.subject | Polymethyl methacrylate resin | en_US |
dc.subject | Fibre reinforcement | en_US |
dc.subject | Cyclic loading | en_US |
dc.subject | Fatigue behaviour | en_US |
dc.subject | Flexural strength | en_US |
dc.title | The influence of mixing ratio on the fatigue behaviour of fibre reinforced polymers | en_US |