Growth and characterization of FeSi nanowires by chemical vapor deposition for gas sensing applications

Loading...
Thumbnail Image

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

University of the Western Cape

Abstract

FeSi nanowires were synthesized via a chemical vapor deposition method. Anhydrous FeCl3 powder in this case served as the Fe source and was evaporated at a temperature of 1100oC to interact with silicon substrates which served as the silicon source. The nanowires followed the vapor solid (VS) growth mechanism, which does not require the use of a metal catalyst; the native silicon oxide layer on the silicon substrates played the role of the catalyst in the growth of these nanostructures. A second growth mechanism, involving the use of a metal catalyst to assist in the growth of the nanowires was attempted by depositing a thin film of gold on silicon substrates. The reaction yielded SiOx nanowires; these results are discussed in detail in Chapter 5. All the nanostructures were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Photoluminescence Spectroscopy (PL), Raman Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR).

Description

>Magister Scientiae - MSc

Keywords

FeSi nanowires, Chemical vapor deposition, Band structures, X-ray diffraction

Citation