Effect of temperature on microorganisms and nitrogen removal in a multi-stage surface flow constructed wetland
Loading...
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract
The effect of low temperature on microbial nitrogen metabolism in constructed wetlands has yet to be extensively investigated. In this study, we analyzed the effects of temperature changes on nitrogen-associated microorganisms and nitrogen metabolism functional genes in a multi-stage surface flow constructed wetland (MSSFCW) using metagenomic sequencing. The treatment of polluted river water in the MSSFCW, which had a mean water temperature (MWT) of ≤17 °C, resulted in a low removal efficiency (RE) for total nitrogen (TN; average RE: 23.05% at 1–17 °C) and nitrate nitrogen (NO3−-N; average RE: −2.41% at 1–17 °C). Furthermore, at a MWT of ≤11 °C, the REs were low for ammonium nitrogen (NH4+-N; average RE: 67.92% at 1–11 °C) and for chemical oxygen demand (COD; average RE: 27.45% at 1–11 °C). At 0.24 m3 m−2 d−1 influent load, the highest REs for TN (66.84%), NO3−-N (74.90%), NH4+-N (83.93%), and COD (52.97%) occurred in July and August, when water temperatures were between 26 and 28 °C.
Description
Keywords
Genes, Metabolism, Microorganisms, Water quality, Climate change
Citation
Wang, H. et al. (2023). Effect of temperature on microorganisms and nitrogen removal in a multi-stage surface flow constructed wetland. Water (Switzerland), 15(7), 1256. https://doi.org/10.3390/w15071256