A review and comparison of methods of parameter estimation and inference for heteroskedastic linear regression models

dc.contributor.authorFarrar, Thomas J.
dc.contributor.authorBlignaut, Rénette Julia
dc.contributor.authorLuus, Retha
dc.contributor.authorSteel, Sarel J.
dc.date.accessioned2026-01-21T10:33:30Z
dc.date.available2026-01-21T10:33:30Z
dc.date.issued2025
dc.description.abstractThis article reviews methods of parameter estimation and inference in the linear regression model under heteroskedasticity. Several approaches to feasible weighted least squares estimation of the parameter vector are reviewed, along with various heteroskedasticity-consistent covariance matrix estimators, which are usually designed with inference as the end goal. A Monte Carlo experiment is designed to evaluate the ability of the reviewed methods to estimate three quantities: the variances of the random errors, the parameter vector, and the standard error of the ordinary least squares estimator thereof. Results of the experiment show that the homoskedastic variance estimator performs well at estimating error variances even in the heteroskedastic data-generating processes studied. Feasible weighted least squares approaches perform best for estimation of the parameter vector, whereas heteroskedasticity-consistent covariance matrix estimators perform best for estimation of the standard error thereof. This motivates a search for a method that would perform well in all three respects.
dc.identifier.citationFarrar, T., Blignaut, R., Luus, R. and Steel, S., 2025. A review and comparison of methods of parameter estimation and inference for heteroskedastic linear regression models. Journal of Applied Statistics, pp.1-30.
dc.identifier.urihttps://doi.org/10.1080/02664763.2025.2496719
dc.identifier.urihttps://hdl.handle.net/10566/21789
dc.language.isoen
dc.publisherTaylor and Francis Ltd.
dc.subjectEstimation
dc.subjectHeteroskedasticity
dc.subjectInference
dc.subjectLinear
dc.subjectRegression
dc.titleA review and comparison of methods of parameter estimation and inference for heteroskedastic linear regression models
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
farrar_a_review_and_comparison_2025.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: