Philosophiae Doctor - PhD (Earth Science)
Permanent URI for this collection
Browse
Browsing by Issue Date
Now showing 1 - 20 of 66
Results Per Page
Sort Options
Item Hydro geochemical characteristics of the basement aquifers in namaqualand(University of the Western Cape, 2003) Titus, R.A; Xu, YAt the onset of this research programme it became apparent that there is a dearth of research studies focusing on the groundwater resources of the region. As a result, a conceptual representation of the hydrogeological system (i.e. specific aquifer systems, groundwater flow regime, etc.) for the perceived problematic aquifer systems in the Namaqualand region did not exist. The research project contributes significantly to conceptual representation of the aquifer system, in particular a quantitative understanding of the regions' groundwater resources in terms of its hydrochemical development and the construction of a groundwater flow model at regional scale as well as at a local scale. The groundwater resources for the Namaqualand region are developed predominantly in the basement rocks. The infiltration and flow of water is controlled by the prevailing complex fracture network and can vary in space and time. Such observations relate to structurally controlled flow systems and varying water chemistry amongst closely spaced fracture systems.Item A decision-making framework for groundwater management in arid zones (with a case study in Namaqualand).(University of the Western Cape, 2004) Pietersen, Kevin Claude; Xu,Yangwin and Green, George CliffordThe main aim of the work on which this thesis is based was to develop a framework for sustainable management of groundwater resources in arid zones with emphasis on Namaqualand in the north western region of South Africa. The first part of the thesis focuses on describing the groundwater resource base and legislative framework for groundwater management. Most aquifers in South Africa occur in fractured rock ranging in age from earliest Pre-Cambrian to Jurassic. Primary aquifers are mostly restricted to the coastal plains and river deposits. Characterisation of the fractured rock aquifers has been limited. Thus, an inadequate knowledge base exists in a number of hydrogeological domains to understand the attributes and dynamics of fractured rock aquifers. A serious shortcoming in our knowledge base is to understand the institutional arrangements necessary for proper resource management. This is particularly important in view of the National Water Act of 1998, where groundwater is subject to the same protection measures as surface water. These measures are sophisticated and require tools and technologies to be developed to support sustainable groundwater management and utilisation. The technical, economic, social, legal, political, and environmental issues affecting groundwater management of arid zones of South Africa were analysed. The objectives and appropriate measures to overcome the barriers for sustainable development were also presented. This was necessary to structure the decision problem and to generate and identify the decision alternatives. Thus decision alternatives have been formulated for the various elements of the objectives in order to achieve preferred scenarios. The main part of the thesis was the development of a decision-making framework for groundwater management in the arid zones of Namaqualand. A multiple criteria decision analysis (MCDA) approach was adopted to assist in the formulation of the decision-making framework. ln order to select the most appropriate MCDA technique, some background was required on the theoretical aspects. A value function method was selected, which provides decision support by interval SMART/SWING. This method incorporates informational uncertainty through interval judgements. The decision problem supported the selection of this method because of the discrete alternatives and uncertainty associated with groundwater management. Further, the method provided an interactive technique to interrogate various decision alternatives based on prior knowledge of the decision-maker. The software WINPRE was utilised in the value tree construction and analyses, A number of value trees and attributes were defined. These attributes were evaluated against the identified alternatives. This provided a systematic framework for the analytical understanding of the problem. As a result a number of preferred alternatives were elicited. The analyses resulted in a model for groundwater management in arid zones. The ideal state for groundwater management was presented, but in practice this is difficult to implement, mainly because of human and financial resources. As a result, a critical path was established based on the analyses done in this thesis. This was applied to the Namaqualand example. ln this example the activities to support a Catchment Management Strategy was identified. This means that the decision-maker is able to focus on issues that are deemed important. More importantly, the method allows the decision-maker to develop the various consequences of the alternatives with stakeholders. As a result of the decision model a number of strategies were proposed for sustainable groundwater management in arid zones with a case study in Namaqualand. A consequences table were developed which could be used for M&E purposes.Item Groundwater recharge estimation in Table Mountain Group aquifer systems with a case study of Kammanassie area(University of the Western Cape, 2005) Wu, Yong; Xu, Yongxin; Titus, Rian; Dept. of Earth Science; Faculty of ScienceThe focus of this study was on recharge mechanisms and recharge estimation within the Table Mountain Group area. The study evaluated recharge processes and recharge estimation methods in the Table Mountain Group aquifer systems.Item Hydraulic properties of the Table Mountain group (TMG) aquifers(University of the Western Cape, 2006) Lin, Lixiang; Xu, YongxinThe Table Mountain Group (TMG), located at the southmost cape of African Continent, is one out of three major regional aquifer systems in South Africa, which has a potential of bulk water supply to meet the requirements of irrigation and local municipalities in the Western and Eastern Cape provinces. The TMG aquifers comprising a thick sequence of hard sedimentary rocks dominated by fractured sandstones have the outcrop area of 37000 km2, the deposit area of 248000 km2 and the thickness ranging from 900m to 4000m. Large-scale distribution of the TMG over various geological structures leads to a big diversity in its hydrogeological properties, especially the hydraulic properties which are critical in determining the aquifers’ abstraction potential and sustainable yield. A proper estimation of hydraulic properties, with focus on the investigation of aquifer porosity, permeability and storativity, is important for the sound evaluation and sustainable utilization of the groundwater resource in the TMG area. Data from previous studies and current research have been collated and analyzed to help establish conceptual models of the TMG aquifers and to quantify the intrinsic aquifer properties − hydraulic properties. Based on the study of hydrogeological settings and aquifer types, combined with the interpretation of aquifer hydraulic tests, it is realized that the hydraulic properties of the TMG rocks are strongly controlled by fractures regarding the groundwater flow path within the TMG rocks. Media study on the nature of the fractures or fracture networks therefore is conducted in detail. Subsequently, the establishment of the fractured-media conceptual models on the basis of stochastic analyses is helpful for the better understanding of groundwater behaviors in the TMG aquifers. With the data derived from field measurements and interpretation of remote sensing data, the fractured rock hydraulic conductivities are estimated by using a hydraulic conductivity tensor approach. Considering the influential factors such aperture, roughness, stress condition, and most importantly the connectivity of fractures, the tensor model is accordingly modified to meet different boundary conditions for the estimation of the hydraulic conductivities on the surface and at depth. As a result, the estimated hydraulic conductivities at most sites fall in the range of 10-2~10-3 m/d that is roughly consistent with site pumping test results. However, it decreases with depth following a negative power law, which implies that the majority of fractures tend to be closed at depth. Site hydraulic tests also show the similar tendency of vertically spatial variation of the hydraulic conductivities. The study of fracture connectivity shows another hydrogeological significance. Fracture networks on the measurement scale present the feature of various fracture blocks in the system rather than they are well connected. The 3-D model demonstrates that very few fractures in the TMG sandstones are competent for groundwater flow. With this regard the computation of hydraulic conductivities is hence calibrated Multiple approaches are employed to estimate porosity and associated aquifer storativity. Results show that porosity of the TMG sandstones is strongly scale-dependent, of which the value of core sample laboratory tests yield a upper limit of 1.0%~3.6%. The porosity of pumping tests and in-situ fracture measurements fall in the middle rang of 0.05%~0.6%, whilst the application of lineament interpretation from remote sensing data produce its lower limit of 1.2×10-8. Assuming the TMG rocks are homogeneous media, the storativity value should have the same trend at various scales. These results indicate that the TMG groundwater resource at a larger scale may be overestimated if use the aquifer parameters derived from a smaller-scale study. Research findings in current study provide a new insight into the fractured rock aquifers in the TMG area. Some of the results will have wide implications on the groundwater management and forms a solid basis the further study of the TMG aquifers.Item Groundwater resource evaluation in Table Mountain group aquifer systems(University of the Western Cape, 2007) Jia, Haili; Xu, Yongxin; Titus, Rian; Dept. of Earth Science; Faculty of ScienceTable Muntain Group has been identified as one of the major Regional Aquifers in South Africa. the vast distribution of it leads to a great diversity in its hydrogeological properties, which influences the dynamics of recharge, discahrge and storage, resulting in groundwater occurrances unevenly distributed in TMG area. Thereby a proper regional groundwater resource evaluation focusing on the quantification of recharge, discharge and storage, is of most importance for the efficient groundwater utilization and management of TMG aquifers.The response of TMG aquifer to pumping stress is studied in Kammanassie Mountains by groundwater flow modeling. 3D hydrogeological model is constructed, which helps to improve the understanding of the conceptual hydrogeological model. Detailed groundwater-related analyses are performed on the basis of previous data sets. Groundwater numerical model is then established according to the conceptual model to stimulate the aquifers responses to various pumping scenarios. Some general data processing approaches are also develooped in this study that can be expected to apply to analog studies.Item Groundwater Dependence of Aquatic Ecosystems associated with the Table Mountain Group Aquifer(University of the Western Cape, 2008) Roets, Wietsche; Xu, Yongxin; Brendonck, Luc; Dept. of Earth Science; Faculty of ScienceResults from this study enables a better understanding of groundwater surface water interactions in the TMG, particularly regarding aquatic ecosystems. It has also highlighted the necessity to do proper impact assessments before proceeding with bulk abstraction from this important aquifer. The results also demonstrated the importance of differentiating between real groundwater and non-groundwater discharge contributions to surface hydrology and where these interface areas are located.Item Modelling of nonpoint source pollution in the Kuils River catchment, Western Cape - South Africa(University of the Western Cape, 2008) Ayuk, James Ayuk; Thomas, AbrahamThe Kuils River Catchment is an urban river catchment that forms part of the larger Kuils-Eerste River system draining the eastern half of the Cape Metropolitan Authority area and Stellenbosch Municipality. Rapid urbanisation has resulted in the encroachment of residential and industrial areas into the river system through channelization and sewage disposal. This research project intends to assess the quality of surface runoff in the Kuils River catchment and determining non-point source pollutant loading rates in the catchment using GIS-based modelling. The study results show how modelled potential sources of surface runoff and NPS pollutants using desktop GIS analysis tools in a sequential process that involved different levels of software applications could explain the characteristics of the catchment. With the help of the Expected Mean Concentration (EMC) values associated with surface runoff from land use/covers, NPS pollutant loads were assessed downstream towards the Kuils River Catchment outlet using the Nonpoint Source Pollution and Erosion Comparison Tool (N-SPECT) based in ArcGIS. The outputs from this model consist of predicted annual pollutant loading (mg/mvyear) for each Kuils-Eerste River that occurs in the catchment. The results have shown clearly the spatial distribution of sources of particular pollutants in the catchment. Further or advanced processing knowhow with this model might provide far reaching insights into the problem and it is however recommended that these results produced using N-SPECT be compared to those of other hydrologic models using the same inputs.Item Hydraulic properties of the Table Mountain Group (TMG) aquifers(University of Western Cape, 2008) Lin, Lixiang; Xu, Yongxin; Titus, RianResearch findings in current study provide a new insight into the fractured rock aquifers in the TMG area. Some of the results will have wide implications on the groundwater management and forms a solid basis the further study of the TMG aquifers.Item Towards a groundwater source and aquifer protection zoning policy in South Africa: Assessment of the legal, socio-economic and institutional arrangements(University of Western Cape, 2009) Pienaar, Harrison Hursiney; Xu, Y.The need for a fundamental change in our approach to water management in South Africa is largely underpinned by the country's Constitution (Act 108 of 1996). Section 24 in Chapter 2 of the Constitution is perhaps the most relevant to be considered when developing a groundwater source and aquifer protection zoning policy, as it explicitly endorses the right to have the environment protected. The mandate required to give effect to the overall protection of South Africa's water resources spans across several sectors and government departments, with expected roles and responsibilities not always clearly defined. The Department of Water Affairs and Forestry (DWAF) is primarily responsible for water resource management. However, the Department of Environmental Affairs and Tourism (DEAn, the National Department of Agriculture (NDA) and the Department of Provincial and Local Government (DPLG) are all key role-players because of their respective responsibilities for biodiversity conservation, land management and development planning across government.Item Integrated approach to solving reservoir problems and evaluations using Sequence Stratigraphy, Geological Structures and Diagenesis in Orange Basin, South Africa"(University of the Western Cape, 2010) Adekola, Solomon Adeniyi; Akinlua, AThe use of integrated approach to evaluate reservoir rock quality and source rock potential is becoming increasingly important in petroleum geology. This approach was employed to unravel the reason for variable reservoir quality of sandstones and evaluation of source rock potential of shale intervals of Orange Basin, SW, South Africa. The data sets acquired for this study include 783.63 km digital 2D seismic lines cutting across the 5 blocks of the basin, digital wireline logs (gamma ray, resistivity, density and neutron), core (sidewall and core) and ditch cutting samples from 10 wells of interest. The digital seismic section and wireline logs were subjected to manual and computer interpretation using specialized softwares (FastTracker, PETREL 2008, and SMT 8.2). The wireline logs of the 10wells were broken to depositional sequences and systems tracts: lowstand, transgressive and highstand systems tracts. The seismic section was analysed for depositional sequences, systems tracts and structures. Growth faults that are listric and normal were found localized in the basin. The faults are flank faults, erestal faults as well as antithetic faults. Sandstone and shale samples were selected within the systems tracts for laboratory analyses. The sidewall and core samples were subjected to petrographic thin section analysis, mineralogical analyses which include x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and stable carbon and oxygen isotopes geochemistry to determine the diagenetic alteration at deposition and post deposition in the basin. The shale samples were subjected to Roek-Eval pyrolysis and accelerated solvent extraction (ASE) prior to gas chromatographic (GC) and gas chromatographic-mass spectrometric (GC-MS) analyses of the rock extracts, in order to determine the provenance, type and thermal maturity of organic matter present in sediments of the Orange Basin. The results revealed a complex diagenetic history of sandstones in this basin, which includes compaction, cementation/micritization, dissolution, silicification/overgrowth of quartz, and fracturing. The Eh-pH shows that the cements in the area of the basin under investigation were precipitated under weak acidic and slightly alkaline conditions. The 0 80 isotope values range from -1.648 to 10.054 %, -1.574 to 13.134 %, and -2.644 to 16.180 % in the LST, TST, and HST, respectively. While 03e isotope values range from -25.667 to -12.44 %, -27.862 to -6.954% and -27.407 to -19.935 % in the LST, TST, and HST, respectively. The plot of 0180 versus 0J3e shows that the sediments were deposited in shallow marine temperate conditions. The consistency of abundance of 0J3e isotope across the stratigraphic sequences indicates that the burial diagenesis has no significant effect on geochemical pattern of occurrence of ()J3e isotope in the sandstones under investigation. The authigenic minerals precipitated blocked the grain interspaces and interlayers and with continued burial, compaction impeded the development of secondary porosity resulting in the poor reservoir quality. The origins of the cementing materials are both autochtonous and allochtonous. The Roek-Eval pyroysis and Toe results of the shale samples revealed that LST is characterised by mainly marginally organic rich shale samples with a few organic rich rocks, variable organic matter types ranging from Type II to Type IV, and a few samples are thermally mature but have low organic matter quality. Four samples from two wells (A_Fl and a_AI) in the LST have good petroleum generative potential but not sufficiently mature for petroleum generation. TST is characterised with a few samples being marginally organic rich with only one being organic rich, mainly Type III kerogen with few Type IV kerogen, and only a few samples are thermally mature that has low organic matter quality. HST is characterised by many marginally organic rich rock samples, mainly Type III and a few mixed Type IIIIII kerogen, and only a few samples are thermally mature. The results of this study show that the LST has the best prospect in terms of petroleum generation potential, followed by HST and TST has least petroleum generation potential. The study also reveals that limited petroleum source rocks exist, which are also impacted by low thermal maturity levels. The basin is more gas prone than oil The shale samples were further analysed by Rock-Eval-Pyrolysis and for n-alkanes, aliphatic isoprenoid hydrocarbons and biomarkers (steranes and hopanes) by gas 2 chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). For most of the shale samples from the different stratigraphic sequences from Aptian to Campanian age Roek-Eval data (hydrogen (HI) and oxygen index (Ol)) and biomarker parameters (oleanane/hopane ratio, proportions of steranes, pristaneln-heptadecane vs. phytanelnoctadecane) point to mainly Typ III terrestrial organic matter. Only a few samples of Turonian age reveal a higher proportion of marine organic matter being classified as Typ IIIIII or Typ II. Biomarker parameters also suggest that the samples are deposited under suboxic to oxic environmental conditions. Roek-Eval data and biomarker maturity parameters assign for most of the samples a maturity level at the beginning of the oil window with some more mature samples of Aptian, Albian and Cenomanian age. The hydrocarbon generation potential is for most of the samples low as indicated by the S2/S3 ratio and HI values, exceptions are samples from Turonian and Aptian ageItem Integrated approach to solving reservoir problems and evaluations using sequence stratigraphy, geological structures and diagenesis in Orange Basin, South Africa(University of the Western Cape, 2010) Adekola, Solomon Adeniyi; Akinlua, Akinsehinwa; Dept. of Earth Science; Faculty of ArtsSandstone and shale samples were selected within the systems tracts for laboratory analyses. The sidewall and core samples were subjected to petrographic thin section analysis, mineralogical analyses which include x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and stable carbon and oxygen isotopes geochemistry to determine the diagenetic alteration at deposition and post deposition in the basin. The shale samples were subjected to Rock-Eval pyrolysis and accelerated solvent extraction (ASE) prior to gas chromatographic (GC) and gas chromatographic-mass spectrometric (GC-MS) analyses of the rock extracts, in order to determine the provenance, type and thermal maturity of organic matter present in sediments of the Orange Basin. The results revealed a complex diagenetic history of sandstones in this basin, which includes compaction, cementation/micritization, dissolution, silicification/overgrowth of quartz, and fracturing. The Eh-pH shows that the cements in the area of the basin under investigation were precipitated under weak acidic and slightly alkaline conditions. The δ18O isotope values range from -1.648 to 10.054 %, -1.574 to 13.134 %, and -2.644 to 16.180 % in the LST, TST, and HST, respectively. While δ13C isotope values range from -25.667 to -12.44 %, -27.862 to -6.954% and -27.407 to -19.935 % in the LST, TST, and HST, respectively. The plot of δ18O versus δ13C shows that the sediments were deposited in shallow marine temperate conditions.Item Petrophysical evaluation of the Albian Age gas bearing sandstone reservoirs of the O-M field, Orange Basin, South Africa(University of the Western Cape, 2010) Opuwari, Mimonitu; Carey, Paul; De Poquioma, Escordia; Dept. of Earth Science; Faculty of SciencePetrophysical evaluation of the Albian age gas bearing sandstone reservoirs of the O-M field, Offshore South Africa has been performed. The main goal of the thesis is to evaluate the reservoir potentials of the field through the integration and comparison of results from core analysis, production data and petrography studies for the evaluation and correction of key petrophysical parameters from wireline logs which could be used to generate an effective reservoir model. A total of ten wells were evaluated and twenty eight sandstone reservoirs were encountered of which twenty four are gas bearing and four are wet within the Albian age depth interval of 2800m to 3500m. Six lithofacies (A1, A2, A3, A4, A5 and A6) were grouped according to textural and structural features and grain size from the key wells (OP1, OP2 and OP3). Facies A6 was identified as non reservoir rock in terms of reservoir rock quality and facies A1 and A2 were regarded as the best reservoir rock quality. This study identifies the different rock types that comprise reservoir and non reservoirs. Porosity and permeability are the key parameters for identifying the rock types and reservoir characterization.Item Groundwater resource evaluation and protection in the Cape Flats, South Africa(University of the Western Cape, 2010) Adelana, Segun Michael Adegboyega; Xu, Yongxin; Mazvimavi, Dominic; Dept. of Earth Science; Faculty of ArtsThe analysis of geologic, hydrologic and hydrogeologic data interpreted to give the characteristics of the Cape Flats aquifer showed the quality of groundwater from the aquifer is suitable for development as a water resource. The conceptual model of the Cape Flats sand shows an unconfined sandy aquifer, grading into semi-confined conditions in some places where thick lenses of clay and peat exists. Recharge rates through the saturated zone of the Cape Flats aquifer have been determined by water table fluctuation (WTF), rainfall-recharge relationship, soil water balance and chloride mass balance methods (CMB). Recharge rates using the WTF vary considerably between wet and dry years and between locations, with a range of 17.3% to 47.5%. Values obtained from empirical rainfall-recharge equation (method 2) agree with those of the WTF. Recharge estimates from the water balance model are comparatively lower but are within the range calculated using empirical method 2 (i.e. 87 - 194 mm or 4 – 21% of MAP). These recharge rates also agree with estimates from the series of other methods applied to sites located in the north-western coast of Western Cape and are comparable to recharge rates obtained elsewhere in the world.Item Petrophysical evaluation of the albian age gas bearing sandstone reservoirs of the o-m field, orange basin, South Africa(University of the Western Cape, 2010) Opuwari, Mimonitu; Carey, Paul; De Poquioma, Escordia; Dept. of Earth SciencePetrophysical evaluation of the Albian age gas bearing sandstone reservoirs of the O-M field, Offshore South Africa has been performed. The main goal of the thesis is to evaluate the reservoir potentials of the field through the integration and comparison of results from core analysis, production data and petrography studies for the evaluation and correction of key petrophysical parameters from wireline logs which could be used to generate an effective reservoir model. A total of ten wells were evaluated and twenty eight sandstone reservoirs were encountered of which twenty four are gas bearing and four are wet within the Albian age depth interval of 2800m to 3500m. Six lithofacies (A1, A2, A3, A4, A5 and A6) were grouped according to textural and structural features and grain size from the key wells (OP1, OP2 and OP3). Facies A6 was identified as non reservoir rock in terms of reservoir rock quality and facies A1 and A2 were regarded as the best reservoir rock quality. This study identifies the different rock types that comprise reservoir and non reservoirs. Porosity and permeability are the key parameters for identifying the rock types and reservoir characterization. Pore throat radius was estimated from conventional core porosity and permeability with application of the Winland’s method for assessment of reservoir rock quality on the bases of pore throat radius. Results from the Winland’s method present five Petrofacies (Mega porous, Macro porous, Meso porous, Micro porous and Nanno porous). The best Petrofacies was mega porous rock type which corresponds to lithofacies A1 and A2. The nano porous rock type corresponds to lithofacies A6 and was subsequently classified as non reservoir rock. The volume of clay model from log was taken from the gamma-ray model corrected by Steiber equations which was based on the level of agreement between log data and the x-ray diffraction (XRD) clay data. The average volume of clay determined ranged from 1 – 28 %. The field average grain density of 2.67 g/cc was determined from core data which is representative of the well formation, hence 2.67 g/cc was used to estimate porosity from the density log. Reservoir rock properties are generally good with reservoir average porosities between 10 – 22 %, an average permeability of approximately 60mD. The laterolog resistivity values have been invasion corrected to yield estimates of the true formation resistivity. In general, resistivities of above 4.0 Ohm-m are productive reservoirs, an average water resistivity of 0.1 Ohm-m was estimated. Log calculated water saturation models were calibrated with capillary pressure and conventional core determined water saturations, and the Simandoux shaly sand model best agree with capillary and conventional core water saturations and was used to determine field water saturations. The reservoir average water saturations range between 23 – 69 %. The study also revealed quartz as being the dominant mineral in addition to abundant chlorite as the major clay mineral. The fine textured and dispersed pore lining chlorite mineral affects the reservoir quality and may be the possible cause of the low resistivity recorded in the area. The reservoirs evaluated in the field are characterized as normally pressured with an average reservoir pressure of 4800 psi and temperature of 220 ºF. An interpreted field aquifer gradient of 0.44 psi/ft (1.01 g/cc) and gas gradient of 0.09 psi/ft (0.2 g/cc) were obtained from repeat formation test measurements. A total of eight gas water contacts were identified in six wells. For an interval to be regarded as having net pay potential, cut-off values were used to distinguish between pay and non-pay intervals. For an interval to be regarded as pay, it must have a porosity value of at least 10 %, volume of clay of less than 40 %, and water saturation of not more than 65 %. A total of twenty four reservoir intervals meet the cut-off criteria and was regarded as net pay intervals. The gross thickness of the reservoirs range from 2.4m to 31.7m and net pay interval from 1.03m to 25.15m respectively. In summary, this study contributes to scale transition issues in a complex gas bearing sandstone reservoirs and serves as a basis for analysis of petrophysical properties in a multi-scale system.Item Geochemical and mineralogical evaluation of toxic contaminants mobility in weathered coal fly ash: as a case study, Tutuka dump site, South Africa(University of the Western Cape, 2011) Akinyemi, Segun Ajayi; Petrik, Leslie F.; Akinlua, Akin; Gitari, Wilson M.; NULL; Faculty of ArtsThe management and disposal of huge volumes of coal combustion by products such as fly ash has constituted a major challenge to the environment. In most cases due to the inadequate alternative use of coal fly ash, the discarded waste is stored in holding ponds, slag heaps, or stock piled in ash dumps. This practice has raised concerns on the prospect of inorganic metals release to the surface and groundwater in the vicinity of the ash dump. Acceptable scientific studies are lacking to determine the best ash disposal practices. Moreover, knowledge about the mobility patterns of inorganic species as a function of mineralogical association or pH susceptibility of the dry disposed ash dump under natural weathering conditions are scarce in the literature. Fundamental understanding of chemical interactions of dry disposed ash with ingressed CO2 from atmosphere, percolating rain water and brine irrigation within ash disposal sites were seen as key areas requiring investigation. The mineralogical association of inorganic species in the dry disposed ash cores can be identified and quantified. This would provide a basis for understanding of chemical weathering, mineralogical transformations or mobility patterns of these inorganic species in the dry ash disposal scenario. The current study therefore aims to provide a comprehensive characterisation of weathered dry disposed ash cores, to reveal mobility patterns of chemical species as a function of depth and age of ash, with a view to assessing the potential environmental impacts. Fifty-nine samples were taken from 3 drilled cores obtained respectively from the 1 year, 8 year and 20-year-old sections of sequentially dumped, weathered, dry disposed ash in an ash dump site at Tutuka - a South African coal burning power station. The core samples were characterized using standard analytical procedures viz: X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transforms infrared (FTIR) techniques, Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and Acid neutralisation capacity (ANC) test. A modified sequential extraction (SE) method was used in this study. The chemical partitioning, mobility and weathering patterns in 1 year, 8 year and 20-year-old sections of the ash dump were respectively investigated using this modified sequential extraction scheme. The sequence of the extractions was as follows: (1) water soluble, (2) exchangeable, (3) carbonate, (4) iron and manganese and (5) residual. The results obtained from the 5 steps sequential extraction scheme were validated with the total metal content of the original sample using mass balance method. The distribution of major and trace elements in the different liquid fractions obtained after each step of sequential extraction of the 59 drilled core samples was determined by inductively coupled plasma mass spectrometry (ICPMS). The data generated for various ash core samples were explored for the systematic analysis of mineralogical transformation and change in ash chemistry with ageing of the ash. Furthermore, the data was analyzed to reveal the impact of ingressed CO2 from atmosphere, infiltrating rain water and brine irrigation on the chemistry of ash core samples. Major mineral phases in original ash core samples prior to extraction are quartz (SiO2) and mullite (Al2O3·2SiO2). Other minor mineral phases identified were hematite (Fe2O3), calcite (CaCO3), lime (CaO), anorthite (CaAl2Si2O8), mica (Ca (Mg, Al)3 (Al3Si) O10 (OH)2), and enstatite (Mg2Si2O6). X-ray diffraction results show significant loss of crystallinity in the older ash cores. The presence of minor phases of calcite and mica in dry disposed ash cores are attributed to reduction in the pore water pH due to hydration, carbonation and pozzolanic reactions. The X-ray diffraction technique was unable to detect Fe-oxyhydroxide phase and morealuminosilicate phases in ash core samples due to their low abundance and amorphous character. X-ray fluorescence results of the original ash core samples showed the presence of major oxides, such as SiO2, Al2O3, Fe2O3, while CaO, K2O, TiO2, Na2O, MnO, MgO, P2O5, and SO3 occur in minor concentrations. The ratio of SiO2/Al2O3 classified the original core samples prior to extraction as a silico-aluminate class F fly ash. The ternary plot of major elements in 1-year-old ash core samples was both sialic and ferrocalsialic but 8 year and 20-year-old ash core samples were sialic in chemical composition. It is noteworthy that the mass % of SiO2 varies through the depth of the core with an increase of nearly 3 %, to 58 mass % of SiO2 at a depth of 6 m in the 1-year-old core whereas in the case of the 8-year-old core a 2 % increase of SiO2 to a level of 57.5 mass % can be observed at levels between 4-8 m, showing dissolution of major components in the matrix of older ash cores.. The Na2O content of the Tutuka ash cores was low and varied between 0.6-1.1 mass % for 1-year-old ash cores to around 0.6-0.8 mass % for 8-year-old ash cores. Sodium levels were higher in 1-year-old ash cores compared to 8 year and 20-year-old ashcores. Observed trends indicate that quick weathering of the ash (within a year) leached out Na+ from the ash dump. No evidence of Na+ encapsulation even though the ash dump was brine irrigated. Thus the dry disposal ash placement method does not result in a sustainable salt sink for Na-containing species over time. The total content of each of the elements in 1 year and 20-year-old ash cores was normalised with their total content in fresh ash from same power station to show enrichment and depletion factor. Major elements such as K+, Mn showed enrichment in 1-year-old ash cores whereas Al, Si, Na+, Ti, Ca, Mg, S and Fe showed depletion due to over time erosion. Trace elements such as Cr, Sr, P, Ba, Pb, V and Zn showed enrichment but Ni, Y, Zr showed depletion attributed to over time erosion. In 20-year-old ash cores, major elements such as Al, Na+ and Mn showed enrichment while Si, K+, Fe, Mg and Ca showed depletion highlighting their mobility. Trends indicated intensive flushing of major soluble components such as buffering constituents (CaO) by percolating rain water. The 1-year-old and 20-year-old coal ash cores showed a lower pH and greater loss/depletion of the soluble buffering constituents than the 2-week-old placed ash, indicating significant chemical weathering within a year. Based on ANC results the leaching behaviours of Ca, Mg, Na+, K+, Se, Cr, and Sr were found to be controlled by the pH of the leachant indicating high mobility of major soluble species in the ash cores when in contact with slightly acid rain water. Other investigated toxic metals such as As, Mo and Pb showed amphoteric behaviour with respect to the pH of the leachant. Chemical alterations and formation of transient minor secondary mineral phases was found to have a significant effect on the acid susceptibility and depletion pattern of chemical species in the core ash samples when compared to fresh ash. These ANC results correlated well with the data generated from the sequential extraction scheme. Based on sequential extraction results elements, showed noticeable mobility in the water soluble, exchangeable and carbonate fractions due to adsorption and desorption caused by variations in the pore water pH. In contrast, slight mobility of elements in the Fe and Mn, and residual fractions of dry disposed fly ashes are attributed to the co-precipitation and dissolution of minor amount of less soluble secondary phase overtime. The 1-year-old dry disposed ash cores were the least weathered among the 3 drilled ash cores. Therefore low concentration of toxic metals in older ash cores were ascribed to extensive weathering with slower release from residual mineral phases over time. Elements were found to associate with different mineral phases depending on the age or depth of the core samples showing greater heterogeneity in dispersion. For instance the average amount of total calcium in different mineral associations of 1-year-old ash cores is as follows; water soluble (10.2 %), exchangeable (37.04 %), carbonate (37.9 %), Fe and Mn (7.1 %) and residual (2.97 %). The amount of total Na+ in different mineral phases of 1-year-old ash cores followed this trend: water soluble (21 %), exchangeable (11.26 %), carbonate (2.6 %), Fe and Mn (4.7 %) and residual (53.9 %). The non-leachable portion of the total Na+ content (namely that contained in the residual fraction) in the 1-year-old ash core samples under conditions found in nature ranged between 5-91 %. This non-leachable portion of the Na+ showed the metastability of the mineral phases with which residual Na+ associates. Results showed older ash cores are enriched in toxic elements. Toxic elements such as As, B, Cr, Mo and Pb are enriched in the residual fraction of older ash cores. For instance As concentration in the residual fraction varied between 0.0003- 0.00043 mg kg-1 for 1-year-old ash cores to around 0.0003-0.0015 mg kg-1 for 20-year-old ash cores. This suggests that the older ash is enriched in toxic elements hence dust from the ash dump would be toxic to human health. The knowledge of mobility and ecotoxicological significance of coal fly ash is needed when considering its disposal or reuse in the environment. The mobility and ecotoxicology of inorganic metals in coal fly ash are determined by (i) mineralogical associations of inorganic species (ii) in-homogeneity in the ash dumps (iii) long and short term exposure to ingress CO2 and percolating rain water. Management issues such as inconsistent placement of ash in the dumps, poor choice of ash dump site, in-homogeneity in brine irrigation, no record of salt load put on the ash dumps and lack of proper monitoring requires improvement. The thesis provides justification for the use of the modified sequential extraction scheme as a predictive tool and could be employed in a similar research work. This thesis also proved that the dry ash disposal method was not environmental friendly in terms of overall leaching potential after significant chemical weathering. Moreover the study proved that the practice of brine co-disposal or irrigation on ash dumps is not sustainable as the ash dump did not act as a salt sink.Item Citizen participation and water services delivery in Khayelitsha, Cape Town(University of the Western Cape, 2011) Nleya, Ndodana; Thompson, Lisa; School of GovernmentThis study analyses the relationship between the manner of citizens’ engagement with the state and the level of service delivery they experience in their everyday lives, as residents of Khayelitsha. The phenomena of so-called ‘service delivery’ protests across South Africa have now become a fixture of South African politics. Khayelitsha is one of the sites with frequent protests in Cape Town and is inhabited by poor people, 70 percent of whom live in informal settlements. While the lack of municipal services is undoubtedly a major problem for many poor people in South Africa, thus far, few studies have been dedicated to investigate empirically this alleged link between service delivery and protest activity. The study utilizes mostly quantitative analysis techniques such as regression analysis and path analysis to discover the form and strength of linkages between the service delivery and participation forms. While residents of informal settlements and therefore poorer services were more prone to engage in protests and thus reinforcing the service delivery hypothesis, this relationship was relatively weak in regression analysis. What is more important than the service delivery variables such as water services was the level of cognitive awareness exemplified by the level of political engagement and awareness on the one hand and level of community engagement in terms of attendance of community meetings and membership of different organizations. In summary the study found relatively weak evidence to support the service delivery hypothesis and stronger evidence for the importance of cognitive awareness and resource mobilization theories in Khayelitsha as the key determinant of protest activity.Item Assessment of groundwater management for domestic use from IWRM perspective in upper Limphasa river catchment, Malawi(University of the Western Cape, 2012) Kanyerere, T.; Xu, Yongxin; Saka, JohnThe research problem for this study is the limited and unsuccessful implementation of the IWRM concept. This thesis has argued that comprehensive assessment of physical and socioeconomic conditions is essential to provide explanation on factors that limit the successful execution of the IWRM approach. It has further argued that the local IWRM works as proxy for full and successful implementation of the IWRM approach.To contextualise this thesis, the prevailing physical and socioeconomic factors in Malawi in relation to current management and usage of water resources were explained.With 1,321m3 per capita per year against index thresholds of 1,700-1,000m3 per capita per year, this study showed that Malawi is a physically water stressed country but not physically water scarce country although economically it is a water scarce country. This novelty is against some literature that present Malawi as a water abundant country.Again, this study showed that executing a full and successful IWRM in Malawi remains a challenge because of the prevailing socioeconomic situation in terms of water policies,water laws, institutions and management instruments. These aspects have not been reformed and harmonised to facilitate a successful operation of the IWRM approach.The main water-related problem in Malawi is the mismanagement of the available water resources. This is largely due to the lack of implementing management approaches which can generate systematic data for practical assessment of water resources to guide the coordinated procedure among water stakeholders working in catchments. This lack of implementing a coordinated management approach commonly known as integrated water resources management (IWRM) can be attributed to various reasons that includei) lack of comprehensive assessment of factors that can explain lack of successful IWRM implementation at catchment level and ii) lack of methods to demonstrate data generation and analysis on quantity, quality and governance of water that show practical operation of IWRM at community level using groundwater as a showcase among others.This study revealed that introducing local IWRM requires a prior knowledge of the evolution and role of the full IWRM concept in the international water policy which aimed at addressing broader developmental objectives. Globally, the current status of the IWRM concept has potential to address such broader developmental objectives, but sustaining IWRM projects where they have been piloted showed slow progress. Basing on the factors that slow such a progress, local IWRM approach has emerged as a proxy to execute the full IWRM as demonstrated in chapter 8 in this thesis. However, the observed lack of sustainable resources to fund continual functioning of local IWRM activities will defeat its potential solution to water management challenges. The main threat for sustainable local IWRM activities is the tendency of national governments to decentralise roles and responsibilities to local governments and communities without the accompanying financial resources to enable the implementation of the local participation, investments and initiatives at local level. If this tendency could be reversed, the contribution by local IWRM towards solving management problems in the water sector will be enormous. Chapter four has provided the general case-study approach used in this study in terms of research design, data collection methods, data analysis methods, ethical consideration and limitation of the current study within the context of water resource management with a focus on groundwater management.Using geologic map, satellite images, photographs and hydrogeologic conceptual model, the following results emerged: 1) that the Upper Limphasa River catchment has fractured rock aquifer with limited permeability and storage capacity; 2) The topographic nature and north-south strikes of the lineaments explained the north-south flow direction of groundwater in the catchment; 3) The drainage system observed in the Kandoli and Kaning’ina Mountains to the east and west of the Upper Limphasa River catchment respectively (Fig. 5.1; Fig.5.2) formed a groundwater recharge boundary; 4)The regional faults in the same mountains (Fig. 5.1; Fig.5.2) formed structural boundar as well as hydrogeologic boundary which controlled flow direction of the groundwater;5) the hydrogeologic conceptual model showed the existence of the forested weathered bedrock in the upland areas of the entire catchment which formed no-flow boundary and groundwater divide thereby controlling the water flow direction downwards (Fig. 5.9);6) The major agricultural commercial activities existed in Lower Limphasa catchment while only subsistence farming existed in Upper Limphasa catchment. This knowledge and visualization from the map (Fig. 5.3) and conceptual model (Fig.5.9) showed interactions between upland and lowland areas and the role of physical factors in controlling groundwater flow direction in the catchment. It also provided the enlightenment on implications of socioeconomic farming activities on water management. These insights enabled this study to recommend the need for expedited implementation of holistic effective management for sustainable water utilization.Using different physical factors, water scarcity indices and methodologies, this study showed that Malawi is a physically water stressed as well as an economic water scarce country. This novelty is against some literature that present Malawi as a water abundant country. Again, despite the high proportion (85%) of Malawians relying on groundwater resource, groundwater availability (storage in km3) is relatively low (269 km3 in Table 6.10) compared to other countries within SADC and Africa. Given the complexity of groundwater abstraction, the available groundwater for use is further reduced for Malawians who depend on such a resource for their domestic and productive livelihoods. Such insights provided the basis for discussing the need for IWRM.Although daily statistics on groundwater demand (i: 21.20 litres; 116.91 litres;80,550.99 litres), use (ii: 16.8 litres; 92.55 litres; 63,766.95 litres) and abstracted but not used (iii: 4.4; 24.36; 16,784.04 litres) were relatively low per person, per household and per sub-catchment respectively, such statistics when calculated on monthly basis (i.Demand: 636 litres; 3,507.30 litres; 2,416,529.70 litres; ii.Use:504 litres; 2,776.5 litres;1, 913, 008.5 litres iii. Abstracted but not used: 132 litres; 730 litres; 503, 521.2); and on yearly basis (i. Demand: 7,632 litres; 42,087.6 litres; 28,998,356.4 litres; ii. Use: 6,048 litres; 33,318 litres; 22, 956, 102 litres; iii: Abstracted but not used: 1,584 litres; 8,769.6 litres; 6,042,254.4 litres) per person, per household and per sub-catchment provided huge amount of groundwater (Table 6.5). Given the limited storage capacity of fractured rock aquifer in the basement complex geology, the monthly and yearly groundwater demand and use on one hand and abstracted but not used on the other was considered enormous. With the population growth rate of 2.8 for Nkhata Bay (NSO, 2009) and the observed desire to intensify productive livelihoods activities coupled with expected negative effects of climate change, the need to implement IWRM approach for such groundwater resource in the study catchment remains imperative and is urgently needed.In addition to identifying and describing factors that explain the limited groundwater availability in the study catchment, the study developed a methodology for calculating groundwater demand, use and unused at both households and sub-catchment levels.This methodology provided step-by-step procedure for collecting data on groundwater demand and use as a tool that would improve availability of data on groundwater.Implications of such results for IWRM in similar environments were discussed. Despite the time-consuming procedure involved in using the developed methodology, the calculations are simple and interpretation of results is easily understood among various stakeholders. Hence, such an approach is recommended for the IWRM approach which requires stakeholders from various disciplines to interact and collaborate. Nonetheless, this recommends the use of this method as its further refinement is being sought. The analysis on groundwater quality has shown that the dominant water type in the aquifers of Upper Limphasa catchment was Ca-HCO3, suggesting that the study area had shallow, fresh groundwater with recent recharged aquifer. Analyses on physicochemical parameters revealed that none of the sampled boreholes (BHs) and protected shallow dug wells (PSWs) had physical or chemical concentration levels of health concern when such levels were compared with 2008-World Health Organisation(WHO) guidelines and 2005-Malawi Bureau of Standards (MBS). Conversely, although the compliance with 2008-WHO and 2005-MBS of pathogenic bacteria (E.coli) in BHs water was 100% suggesting that water from BHs had low risk and free from bacteriological contamination, water from PSWs showed 0% compliance with 2008-WHO and 2005-MBS values implying high risk to human health. The overall assessment on risk to health classification showed that PSWs were risky sources to supply potable water, hence the need to implement strategies that protect groundwater.On the basis of such findings, the analysis in this study demonstrated the feasibility of using IWRM approach as a platform for implementing environmental and engineering interventions through education programmes to create and raise public awareness on groundwater protection and on the need for collaborative efforts to implement protective measures for their drinking water sources. The use of different analytical methods which were applied to identify the exact sources of the observed contaminants in the PSWs proved futile. Therefore, this study concluded that rolling-out PSWs either as improved or safe sources of drinking water requires further detailed investigations.However, this research recommended using rapid assessment of drinking water-quality (RADWQ) methods for assessing the quality of groundwater sources for drinking. Despite the study area being in the humid climatic region with annual rainfall above 1,000 mm, many of the physical factors were not favourable for availability of more groundwater in the aquifers. Such observation provided compelling evidence in this study to commend the local IWRM as a proxy for the full IWRM implementation for sustainable utilization of such waters. Although institutional arrangements, water laws and water policy were found problematic to facilitate a successful implementation of full IWRM at national level in Malawi, this thesis demonstrated that local institutional arrangements, coordination among institutions, data collection efforts by local community members (active participation), self-regulation among local community committees were favourable conditions for a successful local IWRM in the Upper Limphasa River catchment. This research recommends continuation of such local participation, investment and initiatives as proxy for the full and successful IWRM beyond the study catchment. However, the observed lack of financial resource from central government to facilitates local IWRM activities were seen as counterproductive.In addition, this thesis recommended further studies which should aim at improving some observed negative implications of self-regulations on community members and the limited decentralisation elements from the Department of Water Development.Finally, one of the contributions from this study is the scientific value in using different methods to assess the quality of groundwater as presented in chapter 7. The second value is the demonstration of applying practical techniques to evaluate factors that explain the amount of groundwater storage in the aquifers that can be understood by water scientists, water users, water developers and water managers to implement IWRM collaboratively using groundwater as a showcase. The third contribution is the provision of the procedure to systematically generate data on demand (abstraction) and use of groundwater in unmetered rural areas which has the potential to guide water allocation process in the catchment. Fourthly, the thesis has provided a hydrogeologic conceptual model for the first time for Limphasa River catchment to be used as a visual tool for planning and developing management practices and addressing current water problems.Fifthly, the study has shown how local IWRM works at community level as a proxy for the full implementation of IWRM despite the absence of Catchment Management Agencies. The last contribution is the dissemination of results from this study made through publications and conference presentations as outlined in the appendix.Item Effects of land-cover - land-use on water quality within the kuils - Eerste River Catchment(University of Western Cape, 2012) Chingombe, Wisemen; Thomas, Abraham; Mazvimavi, DominicThe most significant human impacts on the hydrological system are due to land-use change. The conversion of land to agricultural, mining, industrial, or residential uses significantly alters the hydrological characteristics of the land surface and modifies pathways and rates of water flow. If this occurs over large or critical areas of a catchment, it can have significant short and long-term impacts, on the quality of water. While there are methods available to quantify the pollutants in surface water, methods of linking non-point source pollution to water quality at catchment scale are lacking. Therefore, the research presented in this thesis investigated modelling techniques to estimate the effect of land-cover type on water quality. The main goal of the study was to contribute towards improving the understanding of how different landcovers in an urbanizing catchment affect surface water quality. The aim of the research presented in this thesis was to explain how the quality of surface runoff varies on different land-cover types and to provide guidelines for minimizing water pollution that may be occurring in the Kuils-Eerste River catchment. The research objectives were; (1) to establish types and spatial distribution of land-cover types within the Kuils-Eerste River catchment, (2) to establish water quality characteristics of surface runoff from specific land-cover types at the experimental plot level, (3) to establish the contribution of each land-cover type to pollutant loads at the catchment scale. Land-cover characteristics and water quality were investigated using GIS and Remote Sensing tools. The application of these tools resulted in the development of a landcover map with 36 land classifications covering the whole catchment. Land-cover in the catchment is predominantly agricultural with vineyards and grassland covering the northern section of the catchment. Vineyards occupy over 35% of the total area followed by fynbos (indigenous vegetation) (12.5 %), open hard rock area (5.8 %), riparian forest (5.2 %), mountain forest (5 %), dense scrub (4.4 %), and improved grassland (3.6 %). The residential area covers about 14 %. Roads cover 3.4 % of the total area. Surface runoff is responsible for the transportation of large quantities of pollutants that affect the quality of water in the Kuils-Eerste River catchment. The different land-cover types and the distribution and concentration levels of the pollutants are not uniform. Experimental work was conducted at plot scale to understand whether landcover types differed in their contributions to the concentration of water quality attributes emerging from them. Four plots each with a length of 10 m to 12 m and 5 m width were set up. Plot I was set up on open grassland, Plot II represented the neyards, Plot III covered the mountain forests, and Plot IV represented the fynbos landcover. Soil samples analyzed from the experimental plots fell in the category of sandy soil (Sa) with the top layer of Plot IV (fynbos) having loamy sand (LmSa). The soil particle sizes range between fine sand (59.1 % and 78.9 %) to coarse sand (between 7 % and 22 %). The content of clay and silt was between 0.2 % and 2.4 %. Medium sand was between 10.7 % and 17.6 %. In terms of vertical distribution of the particle sizes, a general decrease with respect to the size of particles was noted from the top layer (15 cm) to the bottom layer (30 cm) for all categories of the particle sizes. There was variation in particle size with depth and location within the experimental plots. Two primary methods of collecting water samples were used; grab sampling and composite sampling. The quality of water as represented by the samples collected during storm events during the rainfall season of 2006 and 2007 was used to establish water quality characteristics for the different land-cover types. The concentration of total average suspended solids was highest in the following land-cover types, cemeteries (5.06 mg L-1), arterial roads/main roads (3.94 mg L-1), low density residential informal squatter camps (3.21 mg L-1) and medium density residential informal townships (3.21 mg L-1). Chloride concentrations were high on the following land-cover types, recreation grass/ golf course (2.61 mg L-1), open area/barren land (1.59 mg L- 1), and improved grassland/vegetation crop (1.57 mg L-1). The event mean concentration (EMC) values for NO3-N were high on commercial mercantile (6 mg L-1) and water channel (5 mg L-1). The total phosphorus concentration mean values recorded high values on improved grassland/vegetation crop (3.78 mg L-1), medium density residential informal townships (3mgL-1) and low density residential informal squatter camps (3 mg L-1). Surface runoff may also contribute soil particles into rivers during rainfall events, particularly from areas of disturbed soil, for example areas where market gardening is taking place. The study found that different land cover types contributed differently to nonpoint source pollution. GIS model was used to estimate the diffuse pollution of five pollutants (chloride, phosphorus, TSS, nitrogen and NO3-N) in response to land cover variation using water quality data. The GIS model linked land cover information to diffuse nutrient signatures in response to surface runoff using the Curve Number method and EMC data were developed. Two models (RINSPE and N-SPECT) were used to estimate nonpoint source pollution using various GIS databases. The outputs from the GIS-based model were compared with recommended water quality standards. It was found that the RINSPE model gave accurate results in cases where NPS pollution dominate the total pollutant inputs over a given land cover type. However, the N-SPECT model simulations were too uncertain in cases where there were large numbers of land cover types with diverse NPS pollution load. All land-cover types with concentration values above the recommended national water quality standard were considered as areas that needed measures to mitigate the adverse effects of nonpoint pollution. The expansion of urban areas and agricultural land has a direct effect on land cover types within the catchment. The land cover changes have adverse effect which has a potential to contribute to pollution.Item NON-INVASIVE CHARACTERIZATION OF UNSATURATED ZONE TRANSPORT IN DRY COAL ASH DUMPS: A CASE STUDY OF TUTUKA, SOUTH AFRICA(University of the Western Cape, 2013) Muchingami, Innocent I.; Xu, Y.The management of the large volumes of solid wastes produced as coal combustion residue is of particular concern due to the presence of leachable metals and salts which may constitute a long term environmental risk and potential contamination of both surface and groundwater systems of the surrounding environment. In order to implement an efficient monitoring scheme and to assess the impact of the ash dump on the hydrologic system, a thorough knowledge on the migration of solutes fluxes in dry ash dumps as well as the controls on the transport of these solutes to the underlying groundwater system is required. The conventional methods which have been widely used for such applications are centred on extracting and analysing several samples from observation wells are drilled on the dump. This has however created a potentially hazardous situation as the installation of monitoring wells may result in the creation of new fluid pathways and results in further migration of leachates. Nevertheless, non–invasive characterization has often been useful in the determination of subsurface hydraulic properties and is a key step towards the solution of real-life problems in hydrology, hydrogeology and soil science. In contaminant transport non-invasive methods have often proved to be an efficient tool as compared to traditional drilling and sampling techniques which in most cases results in the creation of preferential flow paths and do not allow for the space and time resolution needed for the monitoring of hydrological and environmental processes. In this context, this study seeks to develop a generic conceptual model for the ash dump through the use of non-invasive geophysical techniques and numerical modelling techniques at the Tutuka Ash dump, Mpumalanga South Africa. Changes in electrical resistivity were used correlate changes in moisture contents during moisture and salt leachate ingression in ash dumps with a sufficient accuracy. A determination of the suitability of Archie‘s law to describe the relationship between electrical resistivity and solute transport ash medium was achieved through empirical laboratory experiments. Electrical resistivity tomography was then used as an appropriate tool for the elucidation of potential flow paths and brine dispersion in the ash dump. The flow rates through the ash dump were estimated by considering the rate of brine injection and the distance travelled by the brine plume over the time spanned in time lapse infiltration experiments. Additional geophysical profiles managed to show the lithostratigraphy of underlying hydro-geology, thereby ensuring that the knowledge of the geology can be established without the application of any intrusive methods. To ensure that development of the conceptual model of the unsaturated zone transport of the ash dump was developed with sufficient accuracy, numerical models were also used to describe solute transport in the vadose zone. The HYDRUS2D numerical package was used simulate the flux dynamics within the unsaturated zone of the coal ash medium, so as to develop a conceptual understanding of water flow and salt transport through the unsaturated zone of the coal ash medium. The results from the study suggested a conceptual solute transport model that consists of a two layers. The upper layer represented the unsaturated zone of the ash dump which was the source of any potential contaminant transport that could be of concern. The lower layer describe the underlying the subsurface environment to the ash dump which include the soil zone, the shallow aquifer and the deep fractured rock aquifer. To enable this conceptualisation, results from the numerical simulations and geophysical interpretations of the electrical resistivity profiles were the critical components for optimising the site-specific subsurface water flow and solute transport processes, as well as producing the most acceptable conceptualisation of the ash dump system that could be used in hazard assessment and mitigation against potential groundwater pollution. The conceptual models developed in this study proposed an explanation on impact of the ash dump to the hydro-geologic and the eco-hydrologic environment by proposing a scenario of contamination of the underling ash dump and the existing. In this regard, the study managed to provide important scenarios that may be necessary during mitigation procedures for both the ash dump and the wetland. Key words: non-invasive, coal ash, time lapse, electrical resistivity tomography, numerical models, HYDRUS2D, conceptual model.Item Evaluation of groundwater flow theories and aquifer parameters estimation(University of the Western Cape, 2014) Xiao, Liang; Xu, Yongxin; Lin, LixiangThis thesis deals with some fundamental aspects of groundwater models. Deterministic mathematical models of groundwater are usually used to simulate flow and transport processes in aquifer systems by means of partial differential equations. Analytical solutions for the deterministic mathematical models of the Theis problem and the transient confined-unconfined flow in a confined aquifer are investigated in the thesis. The Theis equation is a most commonly applied solution for the deterministic mathematical model of the Theis problem. In the thesis, a most simplified similarity transformation method for derivation of the Theis equation is proposed by using the Boltzmann transform. To investigate the transient confined-unconfined flow towards a fully penetrating well in a confined aquifer, a new analytical solution for the deterministic mathematical models of interest is proposed in the thesis. The proposed analytical solution considers a change of hydraulic properties (transmissivity and storativity) during the confined-unconfined conversion. Based on the proposed analytical solution, a practical method to determine distance of the conversion interface from pumping well and diffusivity of the unconfined region is developed by using a constant rate test. Applicability of the proposed analytical solution is demonstrated by a comparison with previous solutions, namely the MP and the Chen models. The results show that the proposed analytical solution can be used to assess the effect of the change of diffusivity on the transient confined-unconfined flow. The MP model is only accepted if the transmissivity during the confined-unconfined conversion is constant. The Chen model, given as a special case of the proposed analytical solution, is limited to the analysis of the transient confined-unconfined flow with a fixed diffusivity. An important application of groundwater models is to estimate parameters, such as hydraulic properties and flow dynamics, of groundwater systems by assessing and analysing field data. For instance, the pumping and the hydrochemistry and environmental tracer tests are two effective ways to obtain such data. To evaluate hydraulic properties of aquifer systems by derivative interpretation of drawdown data from pumping tests, a new diagnostic analysis method is proposed based on a lg-lg drawdown derivative, dlgs/dlgt, and the differentiation algorithm namely Lagrange Interpolation Regression (LIR) in the thesis. Use of a combined plot of dlgs/dlgt and a semi-lg drawdown derivative (ds/dlgt) is made to identify various flow segments during variable discharge tests with infinite conditions, constant rate tests in bounded aquifers and tests involving double-porosity behaviours. These can be applied to further characterize pumped aquifers. Compared to traditional diagnostic analysis method using plot of ds/dlgt alone, the combined drawdown derivative plot possesses certain advantages identified as: (1) the plot of dlgs/dlgt is strikingly sensitive for use in unveiling differences between pumping and its following recovery periods in intermittent variable discharge tests; (2) storativity (S) of pumped aquifers can be evaluated by using the combined plot; and (3) quantitative assessments of double-porosity behaviours can also be achieved. Based on two case studies, advantages and disadvantages of uses of the LIR and other existing differentiation methods in calculations of numerical drawdown derivative are demonstrated in practice. The results suggest that the LIR is a preferred method for numerical differentiation of drawdown data as it can be used to effectively minimise noisy effects. The proposed derivative approach provides hydrologists with an additional tool for characterizing pumped aquifers. Use of hydrochemistry and environmental tracer tests to assess flow dynamics of groundwater systems is demonstrated via a case study in the dolomite aquifer of South Africa. An emphasis is on determining mean residence times (MRTs) of the dolomite aquifer by means of an appropriate box model with time series of 14C values of dissolved inorganic carbon (14C-DIC) and initial 14C activities of spring samples during 1970s and 2010s. To obtain the calibrated 14C MRTs, 13C values of dissolved inorganic carbon (δ13C-DIC) of the spring samples are applied to estimate mineral dissolution in the dolomite aquifer and calculate the initial 14C activities. The results indicate that the spring samples have about 50%-80% initial 14C activities. By using the appropriate box model, the calibrated 14C MRTs of the spring system are given within a range from ≤ 10 to 50 years. Additionally, the flow dynamics, including the recharge source and area, the effect of climate change on the temporal trend of the groundwater MRTs and the groundwater flow circulation, of the dolomitic spring system are also discussed for further possible management interventions in the dolomite aquifer.