Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Suwarno, S."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effect of nanoparticle (Pd, Pd/Pt, Ni) deposition on high temperature hydrogenation of Ti-V alloys in gaseous flow containing CO
    (Elsevier B.V., 2017) Suwarno, S.; Williams, M.; Solberg, J.K.; Yartys, V.A.
    The hydrogenation properties of Ti-V hydrides coated with nanoparticles have been studied in gaseous mixtures of argon and hydrogen with and without additions of 1% CO. Nanoparticles of Pd, Ni, and co-deposited Pd/Pt with particle sizes of ~30-60 nm were formed by electroless deposition on the hydride surfaces. The alloy resistance to CO could be significantly improved by particle deposition. Large amounts of hydrogen were absorbed in a CO-containing gas when Ni and Pd/Pt deposition had been applied, while pure Pd deposition had no positive effect. Ni was found to have a stronger effect than those of Pd/Pt and Pd, possibly because of the size effect of Ni nanoparticles.
  • Loading...
    Thumbnail Image
    Item
    Thermal desorption spectroscopy studies of hydrogen desorption from rare earth metal trihydrides REH3 (RE¼Dy, Ho, Er)
    (Journal of Alloys and Compounds, 2020) Suwarno, S.
    Rare earth (RE) metals form two stoichiometric hydrides, REH2 and REH3, and for the yttrium group of RE transformation of a FCC (REH2) into an HCP (REH3) lattice takes place during the second step of hydrogenation REH2 þ ½ H2 / REH3. Earlier studies of the hydrogen desorption properties of the rare earth hydrides were limited to Y and RE ¼ La, Ce, Pr, Nd, Sm, Gd, Tb and Er. The present work is focused on the studies of the kinetics and mechanism of hydrogen desorption from trihydrides of heavy rare earths, DyH3, HoH3, and ErH3. The Thermal Desorption Spectroscopy (TDS) studies were performed at pressures below 1 105 mbar during linear heating from room temperature to 1173 K at different heating rates ranging from 1 to 5.5 K/min. Hydrogen desorption traces show the presence of two main events with the low-temperature peak appearing below 573 K, while the second peak is positioned at 1083e1159 K, with the peak temperatures gradually increasing following the rise of the heating rate. Fitting of the peak temperatures in the TDS spectra using the Kissinger method yielded activation energies of hydrogen desorption for both hydrogen desorption events. For DyH3 and ErH3, the shapes of the TDS spectra appear to be well described by a phase-stuctural transformation following a model of nucleation and growth, while for HoH3 the dehydrogenation mechanism includes a phase boundary reaction. This applied model of phase-structural transformations shows differences in dimensionality and rate-limiting steps as related to the studied compound and the desorption events, REH3 / REH2 or REH2 / R

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback