Browsing by Author "Santos, Mario G."
Now showing 1 - 19 of 19
Results Per Page
Sort Options
Item Constraining the reionization history using deep learning from 21-cm tomography with the Square Kilometre Array(Oxford University Press, 2020) Mangena, Tumelo; Hassan, Sultan; Santos, Mario G.Upcoming 21-cm surveys with the SKA1-LOW telescope will enable imaging of the neutral hydrogen distribution on cosmological scales in the early Universe. These surveys are expected to generate huge imaging data sets that will encode more information than the power spectrum. This provides an alternative unique way to constrain the reionization history, which might break the degeneracy in the power spectral analysis. Using convolutional neural networks, we create a fast estimator of the neutral fraction from the 21-cm maps that are produced by our large seminumerical simulation. Our estimator is able to efficiently recover the neutral fraction (xHI) at several redshifts with a high accuracy of 99 per cent as quantified by the coefficient of determination R2.Item Cosmology from HI galaxy surveys with the SKA(Proceedings of Science, 2014) Maartens, Roy; Abdalla, Filipe B.; Bull, Philip; Camera, Stefano; Benoit-Levy, Aurelien; Joachimi, Benjamin; Kirk, Donnacha; Klöckner, Hans-Rainer; Raccanelli, Alvise; Santos, Mario G.; Zhao, Gong-BoThe Square Kilometer Array (SKA) has the potential to produce galaxy redshift surveys which will be competitive with other state of the art cosmological experiments in the next decade. In this chapter we summarise what capabilities the first and the second phases of the SKA will be able to achieve in its current state of design. We summarise the different cosmological experiments which are outlined in further detail in other chapters of this Science Book. The SKA will be able to produce competitive Baryonic Oscillation (BAOs) measurements in both its phases. The first phase of the SKA will provide similar measurements in optical and IR experiments with completely different systematic effects whereas the second phase being transformational in terms of its statistical power. The SKA will produce very accurate Redshift Space Distortions (RSD) measurements, being superior to other experiments at lower redshifts, due to the large number of galaxies. Cross correlations of the galaxy redshift data from the SKA with radio continuum surveys and optical surveys will provide extremely good calibration of photometric redshifts as well as extremely good bounds on modifications of gravity. Basing on a Principle Component Analysis (PCA) approach, we find that the SKA will be able to provide competitive constraint on dark energy and modified gravity models. Due to the large area covered the SKA it will be a transformational experiment in measuring physics from the largest scales such as non-Gaussian signals. Finally, the SKA might produce the first real time measurement of the redshift drift. The SKA will be a transformational machine for cosmology as it grows from an early Phase 1 to its full power.Item Cosmology on the largest scales with the SKA(Proceedings of Science, 2014) Camera, Stefano; Raccanelli, Alvise; Bull, Philip; Bertacca, Daniele; Chen, Xuelei; Ferreira, Pedro G.; Kunz, Martin; Maartens, Roy; Mao, Yi; Santos, Mario G.; Shapiro, Paul R.; Viel, Matteo; Xug, YidongThe study of the Universe on ultra-large scales is one of the major science cases for the Square Kilometre Array (SKA). The SKA will be able to probe a vast volume of the cosmos, thus representing a unique instrument, amongst next-generation cosmological experiments, for scrutinising the Universe’s properties on the largest cosmic scales. Probing cosmic structures on extremely large scales will have many advantages. For instance, the growth of perturbations is well understood for those modes, since it falls fully within the linear régime. Also, such scales are unaffected by the poorly understood feedback of baryonic physics. On ultra-large cosmic scales, two key effects become significant: primordial non-Gaussianity and relativistic corrections to cosmological observables. Moreover, if late-time acceleration is driven not by dark energy but by modifications to general relativity, then such modifications should become apparent near and above the horizon scale. As a result, the SKA is forecast to deliver transformational constraints on non-Gaussianity and to probe gravity on super-horizon scales for the first time.Item Cosmology on ultralarge scales with intensity mapping of the neutral hydrogen 21 cm emission: limits on primodial non-gaussianity(American Physical Society, 2013) Camera, Stefano; Santos, Mario G.; Ferreira, Pedro G.; Ferramacho, LuisThe large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z ~ 1 − 5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter fNL, with an error close to σfNLItem Cosmology with a SKA HI intensity mapping survey(Proceedings of Science, 2014) Santos, Mario G.; Bull, Philip; Alonso, David; Camera, Stefano; Ferreira, Pedro G.; Bernardi, Gianni; Maartens, Roy; Viel, Matteo; Villaescusa-Navarro, Francisco; Abdalla, Filipe B.; Jarvis, Matt; Metcalf, R. Benton; Pourtsidou, A.; Wolz, LauraHI intensity mapping (IM) is a novel technique capable of mapping the large-scale structure of the Universe in three dimensions and delivering exquisite constraints on cosmology, by using HI as a biased tracer of the dark matter density field. This is achieved by measuring the intensity of the redshifted 21cm line over the sky in a range of redshifts without the requirement to resolve individual galaxies. In this chapter, we investigate the potential of SKA1 to deliver HI intensity maps over a broad range of frequencies and a substantial fraction of the sky. By pinning down the baryon acoustic oscillation and redshift space distortion features in the matter power spectrum – thus determining the expansion and growth history of the Universe – these surveys can provide powerful tests of dark energy models and modifications to General Relativity. They can also be used to probe physics on extremely large scales, where precise measurements of spatial curvature and primordial non-Gaussianity can be used to test inflation; on small scales, by measuring the sum of neutrino masses; and at high redshifts where non-standard evolution models can be probed. We discuss the impact of foregrounds as well as various instrumental and survey design parameters on the achievable constraints. In particular we analyse the feasibility of using the SKA1 autocorrelations to probe the large-scale signal.Item Einstein's legacy in galaxy surveys(Oxford University Press, 2015) Camera, Stefano; Maartens, Roy; Santos, Mario G.Non-Gaussianity in the primordial fluctuations that seeded structure formation produces a signal in the galaxy power spectrum on very large scales. This signal contains vital information about the primordial Universe, but it is very challenging to extract, because of cosmic variance and large-scale systematics especially after the Planck experiment has already ruled out a large amplitude for the signal. Whilst cosmic variance and experimental systematics can be alleviated by the multi-tracer method, we here address another systematic—introduced by not using the correct relativistic analysis of the power spectrum on very large scales. In order to reduce the errors we need to include measurements on the largest possible scales. Failure to include the relativistic effects on these scales can introduce significant bias in the best-fit value from future galaxy surveys.Item H I intensity mapping with MeerKAT: Power spectrum detection in cross-correlation with WiggleZ galaxies(Oxford University Press, 2023) Cunnington, Steven; Li, Yichao; Santos, Mario G.We present a detection of correlated clustering between MeerKAT radio intensity maps and galaxies from the WiggleZ Dark Energy Survey. We find a 7.7σ detection of the cross-correlation power spectrum, the amplitude of which is proportional to the product of the HI density fraction (ΩHI ), HI bias (bHI ), and the cross-correlation coefficient (r). We therefore obtain the constraint ΩHIbHIr=[0.86±0.10(stat)±0.12(sys)]×10−3 , at an effective scale of keff ∼ 0.13hMpc−1 . The intensity maps were obtained from a pilot survey with the MeerKAT telescope, a 64-dish pathfinder array to the SKA Observatory (SKAO). The data were collected from 10.5 h of observations using MeerKAT’s L-band receivers over six nights covering the 11 h field of WiggleZ, in the frequency range 1015–973 MHz (0.400Item HI intensity mapping: Impact of primary beam effects(University of the Western Cape, 2023) Matshawule, Siyambonga Donald; Santos, Mario G.Neutral hydrogen (HI) intensity mapping surveys with upcoming and future radio telescopes such as the MeerKAT, a precursor to the Square Kilometre Array Observatory (SKAO) MID telescope, have great potential for constraining cosmology, particularly in the post-reionization Universe provided that e ective cleaning methods are available to separate the strong foregrounds from the cosmological signal. The application of cleaning methods is usually conducted under the assumption of simplistic primary beam models. In this thesis, I simulate a single-dish wide-area survey with MeerKAT characteristics, and test foreground subtraction with a realistic model for the primary beam that contains a non-trivial frequency dependence. I also probe the impact of strong point sources on the cleaning. To conduct this evaluation, point source maps from a much more realistic full-sky point source catalogue are included as part of the foregrounds present in the sky model.Item Hunting down horizon-scale effects with multi-wavelength surveys(American Astronomical Society, 2015) Fonseca, Jose; Camera, Stefano; Santos, Mario G.; Maartens, RoyNext-generation cosmological surveys will probe ever larger volumes of the universe, including the largest scales, near and beyond the horizon. On these scales, the galaxy power spectrum carries signatures of local primordial non-Gaussianity (PNG) and horizon-scale general relativistic (GR) effects. However, cosmic variance limits the detection of horizon-scale effects. Combining different surveys via the multi-tracer method allows us to reduce the effect of cosmic variance. This method benefits from large bias differences between two tracers of the underlying dark matter distribution, which suggests a multi-wavelength combination of large volume surveys that are planned on a similar timescale. We show that the combination of two contemporaneous surveys, a large neutral hydrogen intensity mapping survey in SKA Phase 1 and a Euclid-like photometric survey, will provide unprecedented constraints on PNG as well as detection of the GR effects. We forecast that the error on local PNG will break through the cosmic variance limit on cosmic microwave background surveys, depending on assumed priors, bias, and sky coverage. GR effects are more robust to changes in the assumed fiducial model, and we forecast that they can be detected with a signal-to-noise of about 14.Item Measuring redshift-space distortion with future SKA surveys(Proceedings of Science, 2014) Raccanelli, Alvise; Bull, Philip; Camera, Stefano; Bacon, David; Blake, Chris; Dore, Olivier; Ferreira, Pedro G.; Maartens, Roy; Santos, Mario G.; Viel, Matteo; Zhao, Gong-BoThe peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-ofsight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this short chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys.Item Measuring the HI mass function below the detection threshold(Royal Astronomical Society, 2020) Pan, Hengxing; Jarvis, Matt J.; Santos, Mario G.We present a Bayesian stacking technique to directly measure the H I mass function (HIMF) and its evolution with redshift using galaxies formally below the nominal detection threshold. We generate galaxy samples over several sky areas given an assumed HIMF described by a Schechter function and simulate the H I emission lines with different levels of background noise to test the technique. We use MULTINEST to constrain the parameters of the HIMF in a broad redshift bin, demonstrating that the HIMF can be accurately reconstructed, using the simulated spectral cube far below the H I mass limit determined by the 5σ flux-density limit, i.e. down to MHI=107.5 M⊙ over the redshift range 0 < z < 0.55 for this particular simulation, with a noise level similar to that expected for the MIGHTEE survey. We also find that the constraints on the parameters of the Schechter function, ϕ⋆, M⋆, and α can be reliably fit, becoming tighter as the background noise decreases as expected, although the constraints on the redshift evolution are not significantly affected. All the parameters become better constrained as the survey area increases. In summary, we provide an optimal method for estimating the H I mass at cosmological distances that allows us to constrain the HIMF below the detection threshold in forthcoming H I surveys. This study is a first step towards the measurement of the HIMF at high (z > 0.1) redshifts.Item Model-independent constraints on dark energy and modified gravity with the SKA(Proceedings of Science, 2014) Zhao, Gong-Bo; Bacon, David; Maartens, Roy; Santos, Mario G.; Raccanelli, AlviseEmploying a nonparametric approach of the principal component analysis (PCA), we forecast the future constraint on the equation of state w(z) of dark energy, and on the effective Newton constant m(k; z), which parameterise the effect of modified gravity, using the planned SKA HI galaxy survey. Combining with the simulated data of Planck and Dark Energy Survey (DES), we find that SKA Phase 1 (SKA1) and SKA Phase 2 (SKA2) can well constrain 3 and 5 eigenmodes of w(z) respectively. The errors of the best measured modes can be reduced to 0.04 and 0.023 for SKA1 and SKA2 respectively, making it possible to probe dark energy dynamics. On the other hand, SKA1 and SKA2 can constrain 7 and 20 eigenmodes of m(k; z) respectively within 10% sensitivity level. Furthermore, 2 and 7 modes can be constrained within sub percent level using SKA1 and SKA2 respectively. This is a significant improvement compared to the combined datasets without SKA.Item Nonlinear modulation of the HI power spectrum on ultra-large scales. I(IOP Science, 2015) Umeh, Obinna; Maartens, Roy; Santos, Mario G.Intensity mapping of the neutral hydrogen brightness temperature promises to provide a three-dimensional view of the universe on very large scales. Nonlinear effects are typically thought to alter only the small-scale power, but we show how they may bias the extraction of cosmological information contained in the power spectrum on ultra-large scales. For linear perturbations to remain valid on large scales, we need to renormalize perturbations at higher order. In the case of intensity mapping, the second-order contribution to clustering from weak lensing dominates the nonlinear contribution at high redshift. Renormalization modifies the mean brightness temperature and therefore the evolution bias. It also introduces a term that mimics white noise. These effects may influence forecasting analysis on ultra-large scales.Item The optically selected 1.4-GHz quasar luminosity function below 1 mJy(Oxford University Press, 2020) Malefahlo, Eliab; Santos, Mario G.; Jarvis, Matt J; White, Sarah V.; Zwart, Jonathan T. L.We present the radio luminosity function (RLF) of optically selected quasars below 1 mJy, constructed by applying a Bayesian-fitting stacking technique to objects well below the nominal radio flux density limit. We test the technique using simulated data, confirming that we can reconstruct the RLF over three orders of magnitude below the typical 5σ detection threshold. We apply our method to 1.4-GHz flux densities from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey, extracted at the positions of optical quasars from the Sloan Digital Sky Survey over seven redshift bins up to z = 2.15, and measure the RLF down to two orders of magnitude below the FIRST detection threshold. In the lowest redshift bin (0.2 < z < 0.45), we find that our measured RLF agrees well with deeper data from the literature. The RLF for the radio-loud quasars flattens below log10[L1.4/WHz−1]≈25.5 and becomes steeper again below log10[L1.4/WHz−1]≈24.8, where radio-quiet quasars start to emerge. The radio luminosity where radio-quiet quasars emerge coincides with the luminosity where star-forming galaxies are expected to start dominating the radio source counts. This implies that there could be a significant contribution from star formation in the host galaxies, but additional data are required to investigate this further. The higher redshift bins show a similar behaviour to the lowest z bin, implying that the same physical process may be responsible.Item Overview of Cosmology with the SKA(Proceedings of Science, 2014) Maartens, Roy; Abdalla, Filipe B.; Jarvis, Matt; Santos, Mario G.The new frontier of cosmology will be led by three-dimensional surveys of the large-scale structure of the Universe. Based on its all-sky surveys and redshift depth, the SKA is destined to revolutionize cosmology, in combination with future optical/ infrared surveys such as Euclid and LSST. Furthermore, we will not have to wait for the full deployment of the SKA in order to see transformational science. In the first phase of deployment (SKA1), all-sky HI intensity mapping surveys and all-sky continuum surveys are forecast to be at the forefront on the major questions of cosmology. We give a broad overview of the major contributions predicted for the SKA. The SKA will not only deliver precision cosmology – it will also probe the foundations of the standard model and open the door to new discoveries on large-scale features of the Universe.Item Probing reionization with LOFAR (Low Frequency Array) using 21-cm redshift space distortions(Oxford University Press, 2013) Jensen, Hannes; Datta, Kanan K.; Santos, Mario G.; Mellema, Garrelt; Chapman, Emma; Abdalla, Filipe B.; Iliev, Ilian T.; Mao, Yi; Shapiro, Paul R.; Zaroubi, Saleem; Bernardi, Gianni; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Harker, G. J. A.; Jelić, V.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez, O.; Offringa, A. R.; Pandey, V. N.; Schaye, J.; Thomas, R. M.; Veligatla, V.; Vedantham, H.; Yatawatta, S.One of the most promising ways to study the epoch of reionization (EoR) is through radio observations of the redshifted 21-cm line emission from neutral hydrogen. These observations are complicated by the fact that the mapping of redshifts to line-of-sight positions is distorted by the peculiar velocities of the gas. Such distortions can be a source of error if they are not properly understood, but they also encode information about cosmology and astrophysics. We study the effects of redshift space distortions on the power spectrum of 21-cm radiation from the EoR using large-scale N-body and radiative transfer simulations. We quantify the anisotropy introduced in the 21-cm power spectrum by redshift space distortions and show how it evolves as reionization progresses and how it relates to the underlying physics. We go on to study the effects of redshift space distortions on LOFAR observations, taking instrument noise and foreground subtraction into account.We find that LOFAR should be able to directly observe the power spectrum anisotropy due to redshift space distortions at spatial scales around k ∼ 0.1Mpc−1 after 1000 h of integration time. At larger scales, sample errors become a limiting factor, while at smaller scales detector noise and foregrounds make the extraction of the signal problematic. Finally, we show how the astrophysical information contained in the evolution of the anisotropy of the 21-cm power spectrum can be extracted from LOFAR observations, and how it can be used to distinguish between different reionization scenarios.Item Prospects for cosmic magnification measurements using H I intensity mapping(Oxford University Press, 2020) Witzemann, Amadeus; Pourtsidou, Alkistis; Santos, Mario G.We investigate the prospects of measuring the cosmic magnification effect by cross-correlating neutral hydrogen intensity mapping (H I IM) maps with background optical galaxies. We forecast the signal-to-noise ratio for H i IM data from SKA1-MID and HIRAX, combined with LSST photometric galaxy samples. We find that, thanks to their different resolutions, SKA1-MID and HIRAX are highly complementary in such an analysis. We predict that SKA1-MID can achieve a detection with a signal-to-noise ratio of ∼15 on a multipole range of ℓ ≲ 200, while HIRAX can reach a signal-to-noise ratio of ∼50 on 200 < ℓ < 2000. We conclude that measurements of the cosmic magnification signal will be possible on a wide redshift range with foreground H I intensity maps up to z ≲ 2, while optimal results are obtained when 0.6 ≲ z ≲ 1.3.Item Synergies between intensity maps of hydrogen lines(Oxford University Press, 2018) Fonseca, Jose; Maartens, Roy; Santos, Mario G.We study synergies between Hi 21cm and Hα intensity map observations, focusing on SKA1- like and SPHEREx-like surveys. We forecast how well such a combination can measure features in the angular power spectrum on the largest scales, that arise from primordial non- Gaussianity and from general relativistic effects. For the first time we consider Doppler, Sachs-Wolfe and integrated SW effects separately. We confirm that the single-tracer surveys on their own cannot detect general relativistic effects and can constrain the non-Gaussianity parameter fNL only slightly better than Planck. Using the multi-tracer technique, constraints on fNL can be pushed down to ~ 1. Amongst the general relativistic effects, the Doppler term is detectable with the multi-tracer. The Sachs-Wolfe terms and the integrated SW effect are still not detectable.Item Validation of the hera phase i epoch of reionization 21 cm power spectrum software pipeline(IOP Publishing, 2022) Aguirre, James E.; Murray, Steven G.; Santos, Mario G.We describe the validation of the HERA Phase I software pipeline by a series of modular tests, building up to an end-to-end simulation. The philosophy of this approach is to validate the software and algorithms used in the Phase I upper-limit analysis on wholly synthetic data satisfying the assumptions of that analysis, not addressing whether the actual data meet these assumptions. We discuss the organization of this validation approach, the specific modular tests performed, and the construction of the end-to-end simulations. We explicitly discuss the limitations in scope of the current simulation effort. With mock visibility data generated from a known analytic power spectrum and a wide range of realistic instrumental effects and foregrounds, we demonstrate that the current pipeline produces power spectrum estimates that are consistent with known analytic inputs to within thermal noise levels (at the 2σ level) for k > 0.2h Mpc−1 for both bands and fields considered. Our input spectrum is intentionally amplified to enable a strong “detection” at k ∼ 0.2 h Mpc−1 —at the level of ∼25σ—with foregrounds dominating on larger scales and thermal noise dominating at smaller scales.