Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Makasu, Cloud"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A note on the stochastic version of the Gronwall lemma
    (Taylor & Francis Group, 2022) Makasu, Cloud
    We prove a stochastic version of the Gronwall lemma assuming that the underlying martingale has a terminal random value in Lp, where 1 p < 1: The proof of the present result is mainly based on a sharp martingale inequality of the Doob-type.
  • Loading...
    Thumbnail Image
    Item
    On maximal inequalities via comparison principle
    (SpringerOpen, 2015) Makasu, Cloud
    Under certain conditions, we prove a new class of one-sided, weighted, maximal inequalities for a standard Brownian motion. Our method of proof is mainly based on a comparison principle for solutions of a system of nonlinear first-order differential equations.
  • Loading...
    Thumbnail Image
    Item
    On the exact constants in one-sided maximal inequalitiesfor Bessel processes
    (Taylor and Francis Group, 2023) Makasu, Cloud
    In this paper, we establish a one-sided maximal moment inequalitywith exact constants for Bessel processes. As a consequence, weobtain an exact constant in the Burkholder-Gundy inequality. Theproof of our main result is based on a pure optimal stopping prob-lem of the running maximum process for a Bessel process. The pre-sent results extend and complement a number of related resultspreviously known in the literature.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback