Browsing by Author "Linkov, Vladimir M."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Consolidated nanomaterials synthesized using nickel micro-wires and carbon nanotubes(University of the Western Cape, 2007) Davids, Wafeeq; Linkov, Vladimir M.; Nechaev, Alexander; Ndungu, Patrick; Dept. of Chemistry; Faculty of ScienceNano-devices are the next step in the application of nanomaterials in modern technology. One area of research that is receiving an increased amount of attention globally is the fabrication of new nano-devices for applications in hydrogen energy technologies. The current work focuses on the synthesis and characterization of nano-devices with potential application in alkaline electrolysis and secondary polymer lithium ion batteries. Previous work with Nickel micro-wires demonstrated the potential to use these nanomaterials as electrodes in alkaline electrolysis. Carbon nanotubes have been shown to posse excellent electrochemical properties. A new direction in research is explored by combining nickel micro-wires with CNT, a new consolidated composite carbon nanocomposite can be realized and the characterization of such a novel composite was the focus of this thesis. Novel composite carbon nanomaterials were synthesized using an electrochemical template technique and a hydrocarbon pyrolysis step. The first step involved the deposition of nickel within the pores of ion track etched Polyethylene terephthalate (PET) membrane; with pore diameters of 1μ, 0.4μ and 0.2 μ. Electrochemical deposition of nickel was carried out galvanostatically in a nickel hard bath between 35-40°C, and using a deposition current density of 75 mAcm2. Carbon nanotubes were then deposited directly onto the surface of the nickel micro-wires via a chemical vapour deposition (CVD) technique using liquid petroleum gas (LPG) as the carbon source. CVD was done at a temperature of 800°C and the deposition time was 5 minutes. The morphology and structural studies of these novel composite nanomaterials were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical investigations were done using Cyclic Voltammetry (CV), Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy (EIS). After removal of the template, before CNT CVD growth, SEM images revealed free standing arrays of nickel micro-wires, and after CNT growth via CVD the SEM micrographs showed that the morphology of the Ni micro-wires was moderately altered by the CVD process. From the XRD results it was shown that the crystallinity of the Nimicro-wires was persevered after the CVD process. The XRD of the nickel micro-wires with CNT grown directly on the surface revealed the characteristic CNT peak at 2θ =24.60. Cyclic Voltammetry (CV) was performed on the consolidated composite nanomaterial in an alkaline solution. The CV revealed that the novel composite carbon nanomaterial was the most active for hydrogen evolution when compared to unmodified Ni micro-wires and a flat nickel electrode. This was attributed to the increase in electrochemical accessible surface area. Electrochemical impedance spectroscopy (EIS) showed that the novel composite carbon nanomaterial had a much higher capacitance than the nickel micro-wires, a flat nickel electrode, a flat nickel substrate modified with CNT, and a graphite electrode. When a similar comparison was done using a commercially available anode for lithium ion battery applications, the novel consolidated composite carbon nanomaterial had double the capacitance of the commercial anode. The consolidated composite carbon nanomaterial was modified by depositing Pt on to the surface of the CNT via electroless deposition. The presence of Pt was determined by Energy dispersive spectrometry and the electrocatalytic activity of the Pt modified consolidated composite carbon nanomaterial was significantly improved. The work presented in this thesis provides a new and unique direction in the synthesis and application of novel consolidated carbon nanomaterials through true synergistic effect between nickel micro-wires and CNT. The exploration of the characteristics of the system and the ability to functionalize the CNT with different moieties allows for a wide range of application in energy conversion devices.Item Development of a small-scale electro-chlorination system for rural water supplies(2010) Key, Julian D.V.; Linkov, Vladimir M.To address the urgent need for safe potable water in South Africa’s rural areas, sustainable systems for water disinfection at the village-scale of operation are required.In this thesis, the development of a small-scale water chlorination system that runs on salt and solar panels is described. The system combines a membrane-based hypochlorite generator, or “membrane electrolyser”, with an automated hypochlorite dosing system.The system was designed to (i) coordinate hypochlorite production and dosing automatically in a flow-through system, and (ii) fit inline with low pressure pipelines from overhead storage tanks or raised water sources. Low cost materials were used for construction, and water-powered mechanisms were devised to control both brine supply to the electrolyser and regulation of water flow. The capacity of the system was based on the maximum daily output of the electrolyser at ~20 g of sodium hypochlorite. This was sufficient chlorinate up to 10 kL of water per day using less than 80 g of salt and less than 0.1 kW.h of electricity. The cost of the system was estimated at ~R10 000 and therefore potentially affordable for communities up to 100 people, e.g. small farms and villages.Testing of the system was carried out at a farm site in Worcester (Western Cape) using remote monitoring of current levels in the electrolyser. Operation of the system over a two month test period, dosing at ~4 mg/L, produced consistent chlorination measured as(FAC). Community participation in maintenance of the brine supply was managed and chlorinated water was made available to the community after a brief social survey was conducted. Community awareness of chlorination was minimal. No significant history of diarrhoea was reported. However, the community regularly boiled their tap water in response to turbidity increase in summer.The system was affected by turbidity increase in the local water, which caused a drop in electrolyser current and chlorine production due to particle blockage of the membrane in the electrolyser. However, turbidity at acceptable levels for chlorination was found to have no detrimental effect on the system’s performance. The system showed promise for rural implementation providing low turbidity was maintained. Therefore,groundwater sites, and surface waters with appropriate clarification systems are recommended for the system’s installation. Further testing of the system will be required to establish its long term viability in the hands of a rural community.Item Hollow-structured NiCoP nanorods as high-performance electrodes for asymmetric supercapacitors(Elsevier, 2020) Linkov, Vladimir M.; Wang, Zining; Wang, HuiOne-dimensional hollow-structured NiCoP nanorods are synthesized via Kirkendall effect resulting from different diffusion rates of Ni and Co ions at 350 °C, using NaH2PO2 as a phosphorization agent. Various techniques were used to study the formation mechanism of hollow NiCoP nanorods which structure and crystallinity could be effectively tuned by adjusting phosphorization time. Capacitance of NiCoP reaches 273.4 μAh cm−2 at a current density of 30 mA cm−2 with a rate retention of 85.6%. Specific capacitance of an asymmetric supercapacitor cell (ASC) where NiCoP sample was used together with activated carbon reached 264.6 μAh cm−2 at 2 mA cm−2 and decreased to 213.2 μAh cm−2 with current density rising to 30 mA cm−2. The ASC possesses quite high energy- and power densities, compared to previously reported results, which demonstrates applicability of hollow NiCoP nanorods for electrochemical energy storage.Item Homogeneity of nanophase electrocatalysts supported on mesoporous materials(University of the Western Cape, 2006) Godongwana, Ziboneni Governor; Linkov, Vladimir M.; Petrik, Leslie F.; Dept. of Chemistry; Faculty of ScienceItem Iridium based mixed oxides as efficient anode catalysts for Solid Polymer Electrolyte (SPE) electrolysers(2010) Felix, Cecil; Linkov, Vladimir M.; Pasupathi, SivakumarThe objective of the thesis is to develop highly efficient catalysts for solid polymer electrolyte (SPE) electrolyser anodes.The anode is the primary cause of the large overpotential of SPE electrolysers and also adds significantly to the cost of the electrolysers. Currently, unsupported IrO2 is a widely used anode catalyst as it exhibits the best stability during the oxygen evolution reaction. The activity of IrO2 needs to be improved significantly to address the high cost and efficiency issues of the SPE electrolyser. Developments aimed at improving the activity of unsupported IrO2 are however limited due to the limitations of the wellknown supports under the operating conditions of electrolysers, leading to their oxidation.In this study binary metal oxides based on IrO2 were developed and optimized as anode catalysts for the SPE electrolyser and compared to the ‘state-of-art’ commercial IrO2 catalyst. The Adams fusion method was adapted and used to synthesize the catalysts.The activities of the catalysts were determined using half-cell studies. Optimum conditions for the preparation of unsupported IrO2 catalysts were found to be 350 oC and 2 hours. The resulting catalysts had twice the activity of the ‘state-of-art’ commercial IrO2 catalyst. Secondary metals were carefully selected, after carrying out both a literature study and an experimental study. Binary metal oxides were then developed using the optimum synthesis conditions. Four binary metal oxides were studied to identify the best/most efficient catalyst for electrolysis. The catalysts were characterized using XRD, TEM, SEM and EDS analyses, in efforts to understand and correlate the activity of the catalysts to its physical properties and obtain information that could be useful for the further development of efficient catalysts.Although all the binary metal oxides studied showed improved activity compared to IrO2, the catalytic activity of Ir0.7Ru0.3O2 was found to be significantly better than the commercial catalyst: it was over 5 times more active than the ‘state-of-art’ commercial IrO2 catalyst. Ir-Pd mixed oxides also proved to be highly efficient as anode catalysts for SPE electrolysers.Item Polymer/nano-organic composite proton exchange membranes for direct methanol fuel cell application(University of the Western Cape, 2005) Luo, Hongze; Linkov, Vladimir M.; Shan, Ji; Dept. of Chemistry; Faculty of ScienceThe proton exchange membrane is one key component of direct methanol fuel cells, which has double functions of conducting protons, separating fuels and oxidant. At present, the performance and price of sulfonic acid proton exchange membrane used in direct methanol fuel cells are deeply concerned. In order to reduce membrane 's cost and improve performance of Nafion membrane, three different kinds of membranes have been studied in this thesis. These membranes are SPEEK membranes, SPEEK/ZP composite membranes and Nafion/ZP composite membranes.