Browsing by Author "Fadaka, Adewale O."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Advances in nanotechnology towards development of silver nanoparticle-based wound-healing agents(MPDI, 2021) Nqakala, Zimkhitha B.; Sibuyi, Nicole R. S.; Fadaka, Adewale O.Since antiquity, silver-based therapies have been used in wound healing, wound care and management of infections to provide adequate healing. These therapies are associated with certain limitations, such as toxicity, skin discolouration and bacterial resistance, which have limited their use. As a result, new and innovative wound therapies, or strategies to improve the existing therapies, are sought after. Silver nanoparticles (AgNPs) have shown the potential to circumvent the limitations associated with conventional silver-based therapies as described above. AgNPs are effective against a broad spectrum of microorganisms and are less toxic, effective at lower concentrations and produce no skin discolouration. Furthermore, AgNPs can be decorated or coupled with other healingpromoting materials to provide optimum healing. This review details the history and impact of silver-based therapies leading up to AgNPs and AgNP-based nanoformulations in wound healing. It also highlights the properties of AgNPs that aid in wound healing and that make them superior to conventional silver-based wound treatment therapies.Item Antimicrobial effects of gum Arabic-silver nanoparticles against oral pathogens(Hindawi, 2022) Ahmed, Omnia; Sibuyi, Nicole R. S.; Fadaka, Adewale O.Dental caries is considered one of the most prevalent oral diseases worldwide, with a high rate of morbidity among populations. It is a chronic infectious disease with a multifactorial etiology that leads to the destruction of the dental tissues. Due to their antimicrobial, anti-inflammatory, antifungal, and antioxidant properties; silver nanoparticles (AgNPs) are incorporated in dental products to help prevent infectious oral diseases. In this study, the antimicrobial efects of AgNPs synthesized using Gum Arabic extracts (GAE) were examined. Te GA-AgNPs were synthesized and characterized using ultraviolet-visible (UV-Vis) spectrophotometer, dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. Te antimicrobial activity of the GA-AgNPs was evaluated on Streptococcus sanguinis (S. sanguinis), Streptococcus mutans (S. mutans), Lactobacillus acidophilus (L. acidophilus), and Candida albicans (C. albicans) using agar disc diffusion and microdilution assays.Item Biological synthesis of gold and silver nanoparticles using leaf extracts of Crassocephalum rubens and their comparative in vitro antioxidant activities(Elsevier, 2020) Adewale, Olusola B.; Egbeyemi, Kayode A.; Fadaka, Adewale O.The use of plant and plant products in the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) is made possible because of the natural inherent phytochemicals responsible for the reduction of respective metallic salts to nanoparticle forms, and ensuring therapeutic applicability. In this study, synthesis of AgNPs and AuNPs was performed using two different aqueous extraction methods for Crassocephalum rubens: maceration using laboratory method of extraction (cold aqueous extract of Crassocephalum rubens (AECR)), and decoction using traditional healer's method of extraction (hot aqueous crude extract of Crassocephalum rubens (CECR)). The synthesized nanoparticles were characterized using various methods, and in vitro antioxidant po- tential were thereafter investigated. The characterization results indicated the formation of mostly spherical- shaped AgNPs and AuNPs with surface plasmon resonance (SPR) band of 470 nm and 540 nm, respectively. The nanoparticles possess high antioxidant potentials but AECR synthesized AuNPs exhibited the least phyto- chemical contents and antioxidant potential when compared to other nanoparticles. It can therefore be concluded that extraction method and nanoparticle type are important factors that could influence the antioxidant properties of the nanoparticles. Further studies using these nanoparticles as anticancer or anti-inflammatory agent in both in vitro and in vivo are underway.Item One-pot synthesis, characterisation and biological activities of gold nanoparticles prepared using aqueous seed extract of Garcinia kola(2023-02) Sibuyi, Nicole R.S.; Fadaka, Adewale O.; Anadozie, Scholastica O.; Adewale, Olusola B.; Isitua, Chinwe C.; Davids, Hajierah; Roux, SaartjieRecently, biogenic synthesis of gold nanoparticles (AuNPs) has become a focus area in cancer research owing to the eco-friendliness and cost effectiveness of the synthetic method. In this study, aqueous extract of Garcinia kola seed (AEGKs) was used for the bio-reduction of Au3+ to Au0. The synthesised AEGKs-AuNPs was characterised by ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS), high-resolution transmission electron microscopy (HRTEM) and Fourier transform-infrared (FT-IR) spectroscopy. The in vitro antioxidant activity of the AEGKs and AEGKs-AuNPs was evaluated using 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability and ferric reducing antioxidant power assays. The AEGKs-AuNPs showed an absorption maximum at 512 nm, and the HRTEM images revealed mostly, spherical-shaped AuNPs in the size range of 2–17 nm. The FT-IR spectroscopy revealed that polyphenolic compounds and proteins were predominant, and responsible for the reduction and capping of the AuNPs. The AEGKs-AuNPs showed concentration dependent antioxidant activities, while dose dependent in vitro anti-cancer activity of the AEGKs-AuNPs was demonstrated against lungs, prostrate, human cervical and human colon cancer cells, using the 3-(4,5-dimethylthiazol-2-yl)− 2,5-diphenyltetrazolium bromide tetrazolium reduction (MTT) assay. The antioxidant and anti-cancer activities of the AEGKs-AuNPs could be attributed to the presence of phytochemicals and physicochemical properties of the AuNPs.Item Plant biomarkers as early detection tools in stress management in food crops: a review(Springer Science and Business Media Deutschland GmbH, 2024) Aina, Omolola; Bakare, Olalekan O.; Fadaka, Adewale O.Main conclusion: Plant biomarkers are objective indicators of a plant’s cellular state in response to abiotic and biotic stress factors. They can be explored in crop breeding and engineering to produce stress-tolerant crop species. Abstract: Global food production safely and sustainably remains a top priority to feed the ever-growing human population, expected to reach 10 billion by 2050. However, abiotic and biotic stress factors negatively impact food production systems, causing between 70 and 100% reduction in crop yield. Understanding the plant stress responses is critical for developing novel crops that can adapt better to various adverse environmental conditions. Using plant biomarkers as measurable indicators of a plant’s cellular response to external stimuli could serve as early warning signals to detect stresses before severe damage occurs. Plant biomarkers have received considerable attention in the last decade as pre-stress indicators for various economically important food crops. This review discusses some biomarkers associated with abiotic and biotic stress conditions and highlights their importance in developing stress-resilient crops. In addition, we highlighted some factors influencing the expression of biomarkers in crop plants under stress. The information presented in this review would educate plant researchers, breeders, and agronomists on the significance of plant biomarkers in stress biology research, which is essential for improving plant growth and yield toward sustainable food production.Item Synthesis, computational and biological studies of alkyltin(IV) N-methyl-N-hydroxyethyl dithiocarbamate complexes(Elsevier, 2021) Adeyemi, Jerry O.; Saibu, Gbemisola M.; Fadaka, Adewale O.Methyltin(IV) of butyltin(IV)–N-hydroxyethyl dithiocarbamate complexes, represented as [(CH3)2Sn(L(OH))2] and [(C4H9)2Sn(L(OH))2] respectively were synthesized and characterized using spectroscopic techniques (1 H, 13C and 119Sn NMR) and elemental analysis. Both infrared and NMR data showed that, the complexes were formed via two sulphur atoms of the dithiocarbamate group. This mode of coordination was further supported by the DFT calculation, which suggested the formation of a distorted octahedral geometry around the tin atom. The complexes were screened for their antioxidant, cytotoxicity and anti-inflammatory properties. Four different assays including DPPH, nitric oxide, reducing power and hydrogen peroxides were used for the antioxidant studies, while an in vitro anti-inflammatory study was done using albumin denaturation assay. The complexes showed good antioxidant activity, especially in the DPPH assay. Butyltin(IV)–N-hydroxyethyl dithiocarbamate showed better cytotoxicity activity compared to methyltin(IV)–N-hydroxyethyl dithiocarbamate in the selected cell lines, which included KMST-6, Caco-2 and A549 cell lines. The anti-inflammatory activities revealed that the two complexes have useful activities better than diclofenac used as control drug.Item Synthesis, theoretical calculation, and biological studies of mono- and diphenyltin(iv) complexes of n-methyl-n-hydroxyethyldithiocarbamate(MDPI, 2022) Adeyemi, Jerry O.; Olasunkanmi, Lukman O.; Fadaka, Adewale O.In this study, chlorophenyltin(IV) [(C6H5)(Cl)Sn(L)2] and diphenyltin(IV) [(C6H5)2Sn(L)2] of N-methyl-N-hydroxyethyldithiocarbamate were prepared and characterized using various spectroscopic methods (FTIR, 1H, 13C, and 119Sn NMR) and elemental analysis. The FTIR and NMR spectral data, used to establish the structure of the compounds, showed the formation of the complexes via coordination to the two sulfur atoms from the dithiocarbamate ligand and the respective phenyltin(IV) derivatives. This coordination mode was further explored by DFT calculations, which showed that the bonding around the Sn center in [(C6H5)2Sn(L)2] was more asymmetric compared to the bonding around [(C6H5)(Cl)Sn(L)2]. However, the Sn–S bonds in [(C6H5)(Cl)Sn(L)2] were found to be more covalent than those in [(C6H5)2Sn(L)2].