Browsing by Author "Clements, D.L."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item The complex physics of dusty star-forming galaxies at high redshifts as revealed by Herschel and Spitzer(IOP Publishing, 2013) Lo Faro, Barbara; Franceschini, Alberto; Vaccari, M.; Silva, L.; Rodighiero, G.; Berta, S.; Bock, J.; Burgarella, D.; Buat, V.; Cava, A.; Clements, D.L.; Cooray, Asantha; Farrah, D.; Feltre, Anna; Gonzalez-Solares, Eduardo A.; Hurley, P.; Lutz, D.; Magdis, G.; Magnelli, B.; Marchetti, L.; Oliver, S.J.; Page, Matthew J.; Popesso, P.; Pozzi, F.; Rigopoulou, D.; Rowan-Robinson, M.; Roseboom, I.G.; Scott, Douglas; Smith, A.J.; Symeonidis, Myrto; Wang, L.; Wuyts, S.We combine far-infrared photometry from Herschel (PEP/HerMES) with deep mid-infrared spectroscopy from Spitzer to investigate the nature and the mass assembly history of a sample of 31 luminous and ultraluminous infrared galaxies ((U)LIRGs) at z ∼ 1 and 2 selected in GOODS-S with 24μm fluxes between 0.2 and 0.5 mJy.We model the data with a self-consistent physical model (GRASIL) which includes a state-of-the-art treatment of dust extinction and reprocessing. We find that all of our galaxies appear to require massive populations of old (>1 Gyr) stars and, at the same time, to host a moderate ongoing activity of star formation (SFR 100M yr−1). The bulk of the stars appear to have been formed a few Gyr before the observation in essentially all cases. Only five galaxies of the sample require a recent starburst superimposed on a quiescent star formation history.We also find discrepancies between our results and those based on optical-only spectral energy distribution (SED) fitting for the same objects; by fitting their observed SEDs with our physical model we find higher extinctions (by ΔAV ∼ 0.81 and 1.14) and higher stellar masses (by Δlog(M ) ∼ 0.16 and 0.36 dex) for z ∼ 1 and z ∼ 2 (U)LIRGs, respectively. The stellar mass difference is larger for the most dust-obscured objects. We also find lower SFRs than those computed from LIR using the Kennicutt relation due to the significant contribution to the dust heating by intermediate-age stellar populations through “cirrus” emission (∼73% and ∼66% of the total LIR for z ∼ 1 and z ∼ 2 (U)LIRGs, respectively).Item HerMES: Candidate gravitationally lensed galaxies and lensing statistics at submillimeter wavelengths(American Astronomical Society, 2013) Wardlow, Julie L.; Cooray, Asantha; De Bernardis, Francesco; Amblard, A.; Arumugam, V.; Aussel, H.; Baker, A.J.; Bethermin, M.; Blundell, R.; Bock, J.; Boselli, A.; Bridge, C.; Buat, V.; Burgarella, D.; Bussmann, R.S.; Cabrera-Lavers, A.; Calanog, J.A.; Carpenter, J.M.; Casey, C.M.; Castro-Rodríguez, N.; Cava, A.; Chanial, P.; Chapin, E.; Chapman, S.C.; Clements, D.L.; Conley, A.; Cox, P.; Dowell, C.D.; Dye, S.; Eales, S.; Farrah, D.; Ferrero, P.; Franceschini, Alberto; Frayer, D.T.; Frazer, C.; Fu, Hai; Gavazzi, R.; Glenn, J.; González Solares, E.A.; Griffin, M.; Gurwell, M.A.; Harris, A.I.; Hatziminaoglou, Evanthia; Hopwood, R.; Hyde, A.; Ibar, Edo; Ivison, R.J.; Kim, S.; Lagache, G.; Levenson, L.; Marchetti, L.; Marsden, G.; Martinez-Navajas, P.; Negrello, M.; Neri, R.; Nguyen, H.T.; OHalloran, B.; Oliver, S.J.; Omont, A.; Page, Matthew J.; Panuzzo, P.; Papageorgiou, A.; Pearson, C.P.; Perez-Fournon, E.; Pohlen, M.; Riechers, D.; Rigopoulou, D.; Roseboom, I.G.; Rowan-Robinson, M.; Schulz, B.; Scott, Douglas; Scoville, N.; Seymour, N.; Shupe, D.L.; Smith, A.J.; Streblyanska, A.; Strom, A.; Symeonidis, Myrto; Trichas, M.; Vaccari, M.; Vieira, J.D.; Viero, M. P.; Wang, L.; Xu, C.K.; Zemcov, M.; Yan, L.Gravitational lensing increases the angular size and integrated flux of affected sources. It is exploited to investigate the mass distribution of the foreground lensing structures and the properties of the background lensed galaxies (see reviews by Bartelmann 2010; Treu 2010). The magnification provided by gravitational lensing makes it an effective tool for identifying and studying intrinsically faint and typically distant galaxies (e.g., Stark et al. 2007; Richard et al. 2008, 2011). The flux boost from lensing yields an improved detection, and the associated spatial enhancement increases the ability to investigate the internal structure of distant galaxies to levels otherwise unattainable with the current generation of instrumentation (e.g., Riechers et al. 2008; Swinbank et al. 2010, 2011; Gladders et al. 2012). Furthermore, gravitational lensing probes the total mass of the foreground deflectors, including the relative content of dark and luminous mass. In combination with dynamical studies, lensing mass reconstruction allows one to obtain the density profile of the dark matter in individual lensing galaxies down to ~10 kpc scales (e.g., Miralda-Escude 1995; Dalal & Kochanek 2002; Metcalf & Zhao 2002; Rusin & Kochanek 2005; Treu & Koopmans 2004).Item Hermes: Cosmic infrared background anisotropies and the clustering of dusty star-forming galaxies(American Astronomical Society, 2013) Viero, M. P.; Wang, L.; Zemcov, M.; Addison, G.; Amblard, A.; Arumugam, V.; Aussel, H.; Bethermin, M.; Bock, J.; Boselli, A.; Buat, V.; Burgarella, D.; Casey, C.M.; Clements, D.L.; Conley, A.; Conversi, L.; Cooray, Asantha; de Zotti, G.; Dowell, C.D.; Farrah, D.; Franceschini, Alberto; Glenn, J.; Griffin, M.; Hatziminaoglou, Evanthia; Heinis, S.; Ibar, Edo; Ivison, R.J.; Lagache, G.; Levenson, L.; Marchetti, L.; Marsden, G.; Nguyen, H.T.; OHalloran, B.; Oliver, S.J.; Omont, A.; Page, Matthew J.; Papageorgiou, A.; Pearson, C.P.; Perez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Roseboom, I.G.; Rowan-Robinson, M.; Schulz, B.; Scott, Douglas; Seymour, N.; Shupe, D.L.; Smith, A.J.; Symeonidis, Myrto; Vaccari, M.; Valtchanov, I.; Vieira, J.D.; Wardlow, Julie L.; Xu, C.K.Star formation is well traced by dust, which absorbs the UV/optical light produced by young stars in actively starforming regions and re-emits the energy in the far-infrared/ submillimeter (FIR/submm; e.g., Savage & Mathis 1979). Roughly half of all starlight ever produced has been reprocessed by dusty star-forming galaxies (DSFGs; e.g., Hauser & Dwek 2001; Dole et al. 2006), and this emission is responsible for the ubiquitous cosmic infrared background (CIB; Puget et al. 1996; Fixsen et al. 1998). The mechanisms responsible for the presence or absence of star formation are partially dependent on the local environment (e.g., major mergers: Narayanan et al. 2010; condensation or cold accretion: Dekel et al. 2009, photoionization heating, supernovae, active galactic nuclei, and virial shocks: Birnboim & Dekel 2003; Granato et al. 2004; Bower et al. 2006). Thus, the specifics of the galaxy distribution—which can be determined statistically to high precision by measuring their clustering properties—inform the relationship of star formation and dark matter density, and are valuable inputs for models of galaxy formation. However, measuring the clustering of DSFGs has historically proven difficult to do.Item MeerKAT observations of herschel protocluster candidates(Oxford University Press , 2024) Ding Y. ; Leeuw, Lerothodi L. ; Clements, D.L.High-redshift protoclusters consisting of dusty starbursts are thought to play an important role in galaxy evolution. Their dusty nature makes them bright in the far-infrared (FIR)/submm but difficult to find in optical/near-infrared (NIR) surveys. Radio observations are an excellent way to study these dusty starbursts, as dust is transparent in the radio and there is a tight correlation between the FIR and radio emission of a galaxy. Here, we present MeerKAT 1.28 GHz radio imaging of three Herschel candidate protoclusters, with a synthesized beam size of ∼ 7.5 arcsec × 6.6 arcsec and a central thermal noise down to 4.35 μJy beam-1. Our source counts are consistent with other radio counts with no evidence of overdensities. Around 95 per cent of the Herschel sources have 1.28 GHz IDs. Using the Herschel250 μm primary beam size as the searching radius, we find 54.2 per cent Herschel sources have multiple 1.28 GHz IDs. Our average FIR-radio correlation coefficient q250μm is 2.33 ± 0.26. Adding q250μm as a new constraint, the probability of finding chance-aligned sources is reduced by a factor of ∼ 6, but with the risk of discarding true identifications of radio-loud/quiet sources. With accurate MeerKAT positions, we cross-match our Herschel sources to optical/NIR data followed by photometric redshift estimations. By removing z > 1 sources, the density contrasts of two of the candidate protoclusters increase, suggestive of them being real protoclusters at z > 1. There is also potentially a 0.9 > z > 1.2 overdensity associated with one candidate protocluster. In summary, photometric redshifts from radio-optical cross-identifications have provided some tentative evidence of overdensities aligning with two of the candidate protoclusters