Browsing by Author "Bull, Philip"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Characterization of inpaint residuals in interferometric measurements of the epoch of reionization(Monthly Notices of the Royal Astronomical Society, 2023) Bull, Philip; Pagano, Michael; Liu, Jing; Liu, AdrianTo mitigate the effects of Radio Frequency Interference (RFI) on the data analysis pipelines of 21 cm interferometric instruments, numerous inpaint techniques have been developed. In this paper, we examine the qualitative and quantitative errors introduced into the visibilities and power spectrum due to inpainting. We perform our analysis on simulated data as well as real data from the Hydrogen Epoch of Reionization Array (HERA) Phase 1 upper limits. We also introduce a convolutional neural network that is capable of inpainting RFI corrupted data. We train our network on simulated data and show that our network is capable of inpainting real data without requiring to be retrained. We find that techniques that incorporate high wavenumbers in delay space in their modelling are best suited for inpainting over narrowband RFI. We show that with our fiducial parameters discrete prolate spheroidal sequences (DPSS) and CLEAN provide the best performance for intermittent RFI while Gaussian progress regression (GPR) and least squares spectral analysis (LSSA) provide the best performance for larger RFI gaps.Item Characterizing line-of-sight variability of polarized dust emission with future cmb experiments(Oxford University Press, 2023) Bull, Philip; McBride, Lisa; Hensley, Brandon SWhile Galactic dust emission is often accounted for in cosmic microwave background (CMB) analyses by fitting a two-parameter modified blackbody (MBB) model in each pixel, typically a number of such clouds are found along each line of sight and within each angular pixel, resulting in a superposition of their spectra. We study the effects of this superposition on pixel-based foreground fitting strategies by modeling the spectral energy distribution (SED) in each pixel as the integral of individual MBB spectra over various physically motivated statistical distributions of dust cloud properties. We show that fitting these SEDs with the two-parameter MBB model generally results in unbiased estimates of the CMB Stokes Q and U amplitudes per pixel, unless there are significant changes in both the dust SED and polarization angle along the line of sight, in which case significant (>10σ) biases are observed in an illustrative model.Item Cosmology from HI galaxy surveys with the SKA(Proceedings of Science, 2014) Maartens, Roy; Abdalla, Filipe B.; Bull, Philip; Camera, Stefano; Benoit-Levy, Aurelien; Joachimi, Benjamin; Kirk, Donnacha; Klöckner, Hans-Rainer; Raccanelli, Alvise; Santos, Mario G.; Zhao, Gong-BoThe Square Kilometer Array (SKA) has the potential to produce galaxy redshift surveys which will be competitive with other state of the art cosmological experiments in the next decade. In this chapter we summarise what capabilities the first and the second phases of the SKA will be able to achieve in its current state of design. We summarise the different cosmological experiments which are outlined in further detail in other chapters of this Science Book. The SKA will be able to produce competitive Baryonic Oscillation (BAOs) measurements in both its phases. The first phase of the SKA will provide similar measurements in optical and IR experiments with completely different systematic effects whereas the second phase being transformational in terms of its statistical power. The SKA will produce very accurate Redshift Space Distortions (RSD) measurements, being superior to other experiments at lower redshifts, due to the large number of galaxies. Cross correlations of the galaxy redshift data from the SKA with radio continuum surveys and optical surveys will provide extremely good calibration of photometric redshifts as well as extremely good bounds on modifications of gravity. Basing on a Principle Component Analysis (PCA) approach, we find that the SKA will be able to provide competitive constraint on dark energy and modified gravity models. Due to the large area covered the SKA it will be a transformational experiment in measuring physics from the largest scales such as non-Gaussian signals. Finally, the SKA might produce the first real time measurement of the redshift drift. The SKA will be a transformational machine for cosmology as it grows from an early Phase 1 to its full power.Item Cosmology on the largest scales with the SKA(Proceedings of Science, 2014) Camera, Stefano; Raccanelli, Alvise; Bull, Philip; Bertacca, Daniele; Chen, Xuelei; Ferreira, Pedro G.; Kunz, Martin; Maartens, Roy; Mao, Yi; Santos, Mario G.; Shapiro, Paul R.; Viel, Matteo; Xug, YidongThe study of the Universe on ultra-large scales is one of the major science cases for the Square Kilometre Array (SKA). The SKA will be able to probe a vast volume of the cosmos, thus representing a unique instrument, amongst next-generation cosmological experiments, for scrutinising the Universe’s properties on the largest cosmic scales. Probing cosmic structures on extremely large scales will have many advantages. For instance, the growth of perturbations is well understood for those modes, since it falls fully within the linear régime. Also, such scales are unaffected by the poorly understood feedback of baryonic physics. On ultra-large cosmic scales, two key effects become significant: primordial non-Gaussianity and relativistic corrections to cosmological observables. Moreover, if late-time acceleration is driven not by dark energy but by modifications to general relativity, then such modifications should become apparent near and above the horizon scale. As a result, the SKA is forecast to deliver transformational constraints on non-Gaussianity and to probe gravity on super-horizon scales for the first time.Item Cosmology with a SKA HI intensity mapping survey(Proceedings of Science, 2014) Santos, Mario G.; Bull, Philip; Alonso, David; Camera, Stefano; Ferreira, Pedro G.; Bernardi, Gianni; Maartens, Roy; Viel, Matteo; Villaescusa-Navarro, Francisco; Abdalla, Filipe B.; Jarvis, Matt; Metcalf, R. Benton; Pourtsidou, A.; Wolz, LauraHI intensity mapping (IM) is a novel technique capable of mapping the large-scale structure of the Universe in three dimensions and delivering exquisite constraints on cosmology, by using HI as a biased tracer of the dark matter density field. This is achieved by measuring the intensity of the redshifted 21cm line over the sky in a range of redshifts without the requirement to resolve individual galaxies. In this chapter, we investigate the potential of SKA1 to deliver HI intensity maps over a broad range of frequencies and a substantial fraction of the sky. By pinning down the baryon acoustic oscillation and redshift space distortion features in the matter power spectrum – thus determining the expansion and growth history of the Universe – these surveys can provide powerful tests of dark energy models and modifications to General Relativity. They can also be used to probe physics on extremely large scales, where precise measurements of spatial curvature and primordial non-Gaussianity can be used to test inflation; on small scales, by measuring the sum of neutrino masses; and at high redshifts where non-standard evolution models can be probed. We discuss the impact of foregrounds as well as various instrumental and survey design parameters on the achievable constraints. In particular we analyse the feasibility of using the SKA1 autocorrelations to probe the large-scale signal.Item Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts(Cambridge University Press, 2020) Bacon, David J; Battye, Richard A.; Bull, PhilipWe present a detailed overview of the cosmological surveys that we aim to carry out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5 000 deg2; a wide and deep continuum galaxy and HI intensity mapping (IM) survey over 20 000 deg2 from to 3; and a deep, high-redshift HI IM survey over 100 deg2 from to 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to . These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical and near-infrared (NIR) surveys like Euclid, LSST, and WFIRST leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.Item Direct optimal mapping for 21 cm cosmology: A demonstration with the hydrogen epoch of reionization array(American Astronomical Society, 2022) Xu, Zhilei; Hewitt, Jacqueline N.; Bull, PhilipMotivated by the desire for wide-field images with well-defined statistical properties for 21 cm cosmology, we implement an optimal mapping pipeline that computes a maximum likelihood estimator for the sky using the interferometric measurement equation. We demonstrate this “direct optimal mapping” with data from the Hydrogen Epoch of Reionization (HERA) Phase I observations. After validating the pipeline with simulated data, we develop a maximum likelihood figure-of-merit for comparing four sky models at 166 MHz with a bandwidth of 100 kHz. The HERA data agree with the GLEAM catalogs (Wayth et al. 2015) to < 10%. After subtracting the GLEAM point sources, the HERA data discriminate between the different continuum sky models, providing most support for the model of Byrne et al. (2021). We report the computation cost for mapping the HERA Phase I data and project the computation for the HERA 320-antenna data; both are feasible with a modern server. The algorithm is broadly applicable to other interferometers and is valid for wide-field and non-coplanar arrays.Item The fore ground transfer function for H I intensity mapping signal reconstruction: MeerKLASS and precision cosmology applications(Oxford University Press, 2023) Cunnington, Steven; Wolz, Laura; Bull, PhilipBlind cleaning methods are currently the preferred strategy for handling foreground contamination in single-dish H I intensity mapping surv e ys. Despite the increasing sophistication of blind techniques, some signal loss will be inevitable across all scales. Constructing a corrective transfer function using mock signal injection into the contaminated data has been a practice relied on for H I intensity mapping experiments. Ho we ver, assessing whether this approach is viable for future intensity mapping surv e ys, where precision cosmology is the aim, remains unexplored. In this work, using simulations, we validate for the first time the use of a foreground transfer function to reconstruct power spectra of foreground-cleaned low-redshift intensity maps and look to e xpose an y limitations. We rev eal that ev en when aggressiv e fore ground cleaning is required, which causes > 50 per cent ne gativ e bias on the largest scales, the power spectrum can be reconstructed using a transfer function to within sub-per cent accuracy. We specifically outline the recipe for constructing an unbiased transfer function, highlighting the pitfalls if one deviates from this recipe, and also correctly identify how a transfer function should be applied in an autocorrelation power spectrum. We validate a method that utilizes the transfer function variance for error estimation in foreground-cleaned power spectra. Finally, we demonstrate how incorrect fiducial parameter assumptions (up to ±100 per cent bias) in the generation of mocks, used in the construction of the transfer function, do not significantly bias signal reconstruction or parameter inference (inducing < 5 per cent bias in reco v ered values).Item Measuring redshift-space distortion with future SKA surveys(Proceedings of Science, 2014) Raccanelli, Alvise; Bull, Philip; Camera, Stefano; Bacon, David; Blake, Chris; Dore, Olivier; Ferreira, Pedro G.; Maartens, Roy; Santos, Mario G.; Viel, Matteo; Zhao, Gong-BoThe peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-ofsight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this short chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys.Item Patterns of primary beam non-redundancy in close-packed 21 cm array observations(Oxford University Press, 2021) Choudhuri, Samir; Bull, Philip; Garsden, HughRadio interferometer arrays such as HERA consist of many close-packed dishes arranged in a regular pattern, giving rise to a large number of ‘redundant’ baselines with the same length and orientation. Since identical baselines should see an identical sky signal, this provides a way of finding a relative gain/bandpass calibration without needing an explicit sky model. In reality, there are many reasons why baselines will not be exactly identical, giving rise to a host of effects that spoil the redundancy of the array and induce spurious structure in the calibration solutions if not accounted for. In this paper, we seek to build an understanding of how differences in the primary beam response between antennas affect redundantly calibrated interferometric visibilities and their resulting frequency (delay-space) power spectra. We use simulations to study several generic types of primary beam variation, including differences in the width of the main lobe, the angular and frequency structure of the sidelobes, and the beam ellipticity and orientation.Item Statistical recovery of 21 cm visibilities and their power spectra with gaussian-constrained realizations and gibbs sampling(The Astrophysical Journal Supplement Series, 2023) Bull, Philip; Kennedy, Fraser; Wilensky, Michael J; Burba, Jacob; Choudhuri, SamirRadio interferometers designed to probe the 21 cm signal from Cosmic Dawn and the Epoch of Reionization must contend with systematic effects that make it difficult to achieve sufficient dynamic range to separate the 21 cm signal from foreground emission and other effects. For instance, the instrument’s chromatic response modulates the otherwise spectrally smooth foregrounds, making them difficult to model, while a significant fraction of the data must be excised due to the presence of radio-frequency interference, leaving gaps in the data. Errors in modeling the (modulated and gappy) foregrounds can easily generate spurious contamination of what should otherwise be 21 cm signal-dominated modes. Various approaches have been developed to mitigate these issues by, for example, using nonparametric reconstruction of the foregrounds, in-painting the gaps, and weighting the data to reduce the level of contamination.