Department of Chemistry
Permanent URI for this community
Browse
Browsing by Author "Ajayi, Fanelwa"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Electrochemical cytochrome P450 enzymatic biosensors for the determination of the reactivity of TB drugs(University of Western Cape, 2020) Rassie, Candice; Iwuoha, Emmanuel; Ajayi, FanelwaTuberculosis (TB) remains a global epidemic despite the fact that treatment has been available since the 1950’s. This disease is highly contagious and spreads via transmission of the Mycobacterium Tuberculosis (MTB) tubercle via coughing, sneezing and spitting. The disease has various side effects including weight loss, fatigue and even death. To date no cure has been found for TB and thus optimisation of treatment is a constant focus in health related research. TB is highly prevalent in South Africa due to the increased level of patients who are co-infected with HIV. Treatment for TB consists of first line drugs including isoniazid (INH), ethambutol (ETH), pyrazinamide (PYR) and rifampicin (RIF). These drugs are highly effective but also produce many adverse drug reactions (ADR’s) over the 6-month course of treatment. These reactions lead to patients not completing the course, losing quality of life and ultimately adding to the development of drug resistant strains of TB. A method of minimising these ADR’s is the development of a phenotype sensor, which is able to determine the metabolic profile of patients. Metabolic profiles play a huge role in the efficacy of treatment by tailoring treatment in order for patients to stay within the therapeutic range of treatment. This would in turn minimise both toxicity and ineffective treatment. Various methods for the quantification of drugs have been developed such as high performance liquid chromatography (HPLC), mass spectrometry (MS) and ultra-violet visible spectroscopy (UV-vis).Item Spectroelectrochemical graphene-silver/zinc oxide nanoparticulate phenotype biosensors for ethambutol and pyrazinamide(University of the Western Cape, 2019) Tshoko, Siphokazi; Ajayi, Fanelwa; Iwuoha, Emmanuel; Mulaudzi-Masuku, TakalaniTuberculosis (TB), a deadly disease second to HIV/AIDS, is a global health problem. Diagnosis of active tuberculosis is tedious and requires expensive procedures since there is no recognizable method for sole detection of active TB. Although this is a deadly disease, treatment drug toxicity is also an issue that also causes fatalities in diagnosed patients. Therefore, a rapid sensitive and specific diagnostic method is imperative for TB drug management. In this study spectroscopic and/or electrochemical biosensors were developed for the detection and quantification of TB treatment drugs. The biosensors were constructed with electroactive layers of graphene oxide coupled to silver nanoparticles and/or zinc oxide nanoparticles. These nanoparticles coupled with graphene oxide sheets were covalently attached onto the enzymes such as Cytochrome P450-2D6 to achieve the electrochemical detection of the TB treatment drugs and obtain the required electron transfer between the electrode surface and enzyme. The surface morphology of graphene oxide, nanoparticles as well as the green synthesized nanocomposites were achieved using High-Resolution Transmission Electron Microscopy (HRTEM), Atomic Force Microscopy (AFM), and High- Resolution Scanning Electron Microscopy (HRSEM) while the elemental analysis were obtained using Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-Ray (EDX), Raman spectroscopy and X-Ray diffraction (XRD). Additionally, the optical properties of the developed nanocomposites where further characterised using Small Angle X-ray Scattering (SAXS), Photoluminescence Spectroscopy (PL) and Ultraviolet Spectroscopy (UV-vis). The electrochemical studies were obtained using cyclic voltammetry (CV) and showed an increase in electron conductivity for the green synthesized zinc oxide nanoparticles coupled with graphene oxide (ZnONPs/GO) and silver nanoparticles coupled with graphene oxide (AgNPs/GO) nanocomposite which was an indication that they were suitable as platforms towards biosensor development. Furthermore, amperometric technique was also used for biotransformation of the TB treatment drugs (Ethambutol and Pyrazinamide) in standard solutions of 0.1 M phosphate buffer (pH 7.0). Furthermore, the sensitivity value of 0.0748 μA/μM was determined for the ethambutol biosensor while a value of 0.1715 μA/μM was determined for the pyrazinamide biosensors. Very good detection limits were obtained for the standard solutions of ethambutol and pyrazinamide where a value of 0.02057 nM was determined for ethambutol at concentration linear range of 50 μM – 400 μM. Additionally, a value of 0.8975 x 10-2 nM was determined for pyrazinamide at the concentration linear range of 100 μM – 300 μM. The determined limit of detections have provided a clear indication that these biosensors have potential of being used in human samples since these values are below the peak serum concentrations of these drugs in TB diagnosed patients as reported in literature. This was further confirmed by the limit of quantification values determined for each biosensor where a value of 0.8975 x 10-2 nM was determined for pyrazinamide and a value of 0.02057 nM was determined for ethambutol.Item Synthetic strategies for denatured cytochrome-c analogues towards analytical reporting of NOx species(University of the Western Cape, 2019) Farao, Al Cerillio; Baker, Priscilla; Ajayi, FanelwaNitric oxide (NO) plays a key role as biological messenger in the biological system, however detection and quantification thereof has always posed significant problems. NOx is a principal constituent of air pollutants. There are seven oxides of nitrogen of which N2O, NO and NO2 are most important. NO is a free radical and reacts extremely fast with oxygen, peroxides and superoxides. It’s these reactions which are responsible for NO’s fleeting existence. The specific detection and quantification of NO still remains challenging. Most techniques rely on the measurements of secondary nitrite and nitrate species. Electrochemical techniques using ultra micro-electrode systems presented the possibility of direct detection of NO, offering a range of favourable characteristics; good selectivity towards NO, good sensitivity, fast response, long-term stability and ease of handling. Electrochemical detection of NO relies on the modification of electrode surfaces and exploiting the redox properties of NO. NO can either be oxidized or reduced electrochemically depending on the nature of the solution. Under cathodic current NO is reduced to nitrosyl, a highly unstable derivative of NO. These nitrosyls are subject to a serious of chemical reactions to eventually form nitrous oxide. Due to the interferences presented by the electrochemical reduction of NO, the electro oxidation of NO is therefore the methodology of choice for NO detection. The electrochemical oxidation of NO occurs at positive potentials around 800 mV vs. Ag/AgCl. However this potential range is not only favourable to NO oxidation but can lead to the oxidation of several other biological species. These interfering species are biologically present at concentrations higher than NO therefore selectivity is of the highest order when designing these electrode systems. Some nitric oxide sensors are limited in their sensitivity, stability and reproducibility. Direct electron transfer between redox proteins and conductive membrane layers has been scrutinized for years in an attempt to reproduce the mechanistic charge transfer processes for sensor application. However, literature reports have presented many arguments on the complexities associated with depositing these enzymes on electrode surfaces for the purpose of reproducing direct electron transfer at metalloprotein centres. The study sets out to design a material which could mimic the electrochemistry of denatured cytochrome-c. To achieve this it was imperative to design a polymer which could reproduce the electrochemistry of the ligands coordinated to the metal centre of the metalloprotein. A novel Schiff base was synthesized by cross-linking naphthalene to pyrrole to produce the monomer, N,N-bis((1H-pyrrol-2-yl)methylene)naphthalene-2,3-diamine). The monomer was electrodeposited on a screen print carbon electrode (SPCE) vs. Ag/AgCl and served as a supporting layer for denatured cytochrome-c. Cytochrome-c is classified as a metalloprotein. These metalloproteins possess metal centres which when denatured unfolds and allows access to the metal centre. Cytochrome-c was subjected to thermal denaturation which opened up the iron centre. The denatured metalloprotein was cross-linked to the ligand to reconstruct the heme centre environment. This was believed to facilitate the electrochemical activity of the system and allow for electrochemical analysis of these metalloproteins for sensor application. The redox behaviour of the sensors were modelled in phosphate buffer solution (PBS) with cyclic voltammetry. Electrochemical analysis reported the sensors to possess reversible electrochemistry with diffusion control characteristics. The sensor recorded a redox system in the negative potentials range. Following the establishment of the electrochemical profile of the sensor an attempt was made to produce a synthetic analogue of denatured cytochrome-c. Iron (II) was chelated to the monomer N,N-bis((1H-pyrrol-2-yl)methylene)naphthalene-2,3-diamine) to form an iron ligand complex. The complex was subjected to a series of characterization techniques which confirmed coordination to the metal centre. The iron ligand complex was electrodeposited on a SPCE over the potential window of -1 V and 1 V to model the electrochemical behaviour of the sensor. The material was found to be electroactive. Subsequent electrochemical analysis revealed the system to have electrochemical properties, analogous to that of the denatured cytochrome-c system. The sensor was applied in NO and NO2 studies and displayed an affinity towards NO. Based on extrapolated values it was postulated that the lower limit range for NO detection was in the range of 30 to 40 nM. The potentials recorded were lower than the reported oxidation potentials for nitric oxide. The sensor displayed stability and selectivity towards nitric oxide within a complex matrix. The complex matrix employed in this study was synthetic urine that was synthesised in the lab. The sensor displayed the capacity for linear range of NO detection with very low error margins.