Accelerating reionization simulations using machine learning

dc.contributor.advisorSultan, Hassan
dc.contributor.authorMasipa, Mosima Portia
dc.date.accessioned2023-11-14T08:37:18Z
dc.date.accessioned2024-10-30T10:23:29Z
dc.date.available2023-11-14T08:37:18Z
dc.date.available2024-10-30T10:23:29Z
dc.date.issued2023
dc.description>Magister Scientiae - MScen_US
dc.description.abstractEpoch of Reionization (EoR) refers to the time in the history of the universe when the appearance of the first luminous sources reionized the intergalactic medium (IGM). The EoR carries a wealth of information regarding structure formation and evolution. Ongoing and planned 21cm experiments such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA) are expected to generate huge amounts of high dimensional datasets, and hence a new generation of efficient simulations and tools are required in order to maximize their scientific return. While Convolutional neural networks (CNNs) achieve the state-of-the-art performance to extract information from large scale fields, generating large training datasets and fully exploring the cosmological and astrophysical parameter space require fast simulations.en_US
dc.identifier.urihttps://hdl.handle.net/10566/16644
dc.language.isoenen_US
dc.publisherUniversity of the Western Capeen_US
dc.rights.holderUniversity of the Western Capeen_US
dc.subjectMachine Learningen_US
dc.subjectContinuous mapsen_US
dc.subjectCosmologyen_US
dc.subjectSquare Kilometre Array (SKA)en_US
dc.subjectHydrogen Epoch of Reionization Array (HERA)en_US
dc.titleAccelerating reionization simulations using machine learningen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
masipa_nsc_m_2023.pdf
Size:
31.81 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: