South African Sign Language Recognition Using Feature Vectors and Hidden Markov Models

dc.contributor.advisorConnan, James
dc.contributor.authorNaidoo, Nathan Lyle
dc.date.accessioned2022-03-07T08:11:15Z
dc.date.accessioned2024-10-30T14:00:38Z
dc.date.available2022-03-07T08:11:15Z
dc.date.available2024-10-30T14:00:38Z
dc.date.issued2010
dc.description>Magister Scientiae - MScen_US
dc.description.abstractThis thesis presents a system for performing whole gesture recognition for South African Sign Language. The system uses feature vectors combined with Hidden Markov models. In order to construct a feature vector, dynamic segmentation must occur to extract the signer's hand movements. Techniques and methods for normalising variations that occur when recording a signer performing a gesture, are investigated. The system has a classification rate of 69%.en_US
dc.identifier.urihttps://hdl.handle.net/10566/16921
dc.language.isoenen_US
dc.publisherUniversity of the Western Capeen_US
dc.rights.holderUniversity of the Western Capeen_US
dc.subjectHidden Markov modelsen_US
dc.subjectPersonal computer (PC)en_US
dc.subjectSouth African Sign Language (SASL)en_US
dc.subjectRecognition and Animationen_US
dc.subjectUniversity of the Western Cape (UWC)en_US
dc.subjectGesture Recognition (GR)en_US
dc.titleSouth African Sign Language Recognition Using Feature Vectors and Hidden Markov Modelsen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Naidoo_M_NSC_2010.pdf
Size:
47.57 MB
Format:
Adobe Portable Document Format
Description:
Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: