Analysis of the differentially expressed proteins and metabolic pathways of honeybush (cyclopia subternata) in response to water deficit stress
Loading...
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract
Honeybush (Cyclopia spp.) is a rich source of antioxidant properties and phenolic compounds. Water availability plays a crucial role in plant metabolic processes, and it contributes to overall quality. Thus, this study aimed to investigate changes in molecular functions, cellular components, and biological processes of Cyclopia subternata exposed to different water stress conditions, which include well-watered (as Control, T1), semi-water stressed (T2), and water-deprived (T3) potted plants. Samples were also collected from a well-watered commercial farm first cultivated in 2013 (T13) and then cultivated in 2017 (T17) and 2019 (T19). Differentially expressed proteins extracted from C. subternata leaves were identified using LC-MS/MS spectrometry. A total of 11 differentially expressed proteins (DEPs) were identified using Fisher’s exact test (p < 0.00100). Only α-glucan phosphorylase was found to be statistically common between T17 and T19 (p < 0.00100). Notably, α-glucan phosphorylase was upregulated in the older vegetation (T17) and downregulated in T19 by 1.41-fold. This result suggests that α-glucan phosphorylase was needed in T17 to support the metabolic pathway. In T19, five DEPs were upregulated, while the other six were downregulated.
Description
Keywords
Biotechnology, Carbon fixation, Agriculture, Water resource management, Gene ontology
Citation
Mahlare, M. J. S. et al. (2023). Analysis of the differentially expressed proteins and metabolic pathways of honeybush (cyclopia subternata) in response to water deficit stress. Plants, 12(11), 2181. https://doi.org/10.3390/plants12112181