Stochastic modeling of a mosquito-borne disease
dc.contributor.author | Abiodun, Gbenga J. | |
dc.contributor.author | Witbooi, Peter Joseph | |
dc.contributor.author | van Schalkwyk, Garth J. | |
dc.date.accessioned | 2020-11-23T06:55:12Z | |
dc.date.available | 2020-11-23T06:55:12Z | |
dc.date.issued | 2020 | |
dc.description.abstract | We present and analyze a stochastic differential equation (SDE) model for the population dynamics of a mosquito-borne infectious disease. We prove the solutions to be almost surely positive and global. We introduce a numerical invariant R of the model with R<1 being a condition guaranteeing the almost sure stability of the disease-free equilibrium. We show that stochastic perturbations enhance the stability of the disease-free equilibrium of the underlying deterministic model. We illustrate the main stability theorem through simulations and show how to obtain interval estimates when making forward projections. We consulted a wide range of literature to find relevant numerical parameter values. | en_US |
dc.identifier.citation | Abiodun, G.J. (2020). Stochastic modeling of a mosquito-borne disease. Advances in Difference Equations, 2020(1),347. | en_US |
dc.identifier.issn | 1687-1847 | |
dc.identifier.uri | https://doi.org/10.1186/s13662-020-02803-w | |
dc.identifier.uri | http://hdl.handle.net/10566/5446 | |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | SDE model | en_US |
dc.subject | Basic reproduction number | en_US |
dc.subject | Exponential stability | en_US |
dc.subject | Malaria | en_US |
dc.subject | Extinction | en_US |
dc.title | Stochastic modeling of a mosquito-borne disease | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Witbooi2020_Article_StochasticModelingOfAMosquito-.pdf
- Size:
- 1.63 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: