Generalizing β- and λ-maps

dc.contributor.authorAvilez, Ana Belén
dc.date.accessioned2025-08-11T12:38:23Z
dc.date.available2025-08-11T12:38:23Z
dc.date.issued2025
dc.description.abstractWe generalize the notions of β- and λ-maps in terms of selections of sublocales, obtaining different classes of localic maps. These new classes of maps are used to characterize almost normal, extremally disconnected, F- and Oz-locales, among other types of locales, in a manner akin to the characterization of normal locales via β-maps. As a byproduct we obtain a characterization of localic maps that preserve the completely below relation (that is, the right adjoints of assertive frame homomorphisms).
dc.identifier.citationAvilez, A.B., 2025. Generalizing β-and λ-maps. Topology and its Applications, 365, p.109282.
dc.identifier.urihttps://doi.org/10.1016/j.topol.2025.109282
dc.identifier.urihttps://hdl.handle.net/10566/20675
dc.language.isoen
dc.publisherElsevier B.V.
dc.subjectFrame
dc.subjectLocale
dc.subjectRegular Lindelöf reflection
dc.subjectStone-Čech compactification
dc.subjectSublocale
dc.titleGeneralizing β- and λ-maps
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avilez_generalizing_β_and_λ_maps_2025.pdf
Size:
818.7 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: