Synthesis of an ordered mesoporous carbon with graphitic characteristics and its application for dye adsorption

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

An ordered mesoporous carbon (OMC) was prepared by a chemical vapor deposition technique using liquid petroleum gas (LPG) as the carbon source. During synthesis, LPG was effectively adsorbed in the ordered mesopores of SBA-15 silica and converted to a graphitic carbon at 800 °C. X-ray diffraction and nitrogen adsorption/desorption data and high-resolution transmission electron microscopy (HRTEM) of the OMC confirmed its ordered mesoporous structure. The OMC was utilized as an adsorbent in the removal of dyes from aqueous solution. A commercial powder activated carbon (AC) was also investigated to obtain comparative data. The efficiency of the OMC for dye adsorption was tested using acidic dye acid orange 8 (AO8) and basic dyes methylene blue (MB) and rhodamine B (RB). The results show that adsorption was affected by the molecular size of the dye, the textural properties of carbon adsorbent and surface-dye interactions. The adsorption capacities of the OMC for acid orange 8 (AO8), methylene blue (MB) and rhodamine B (RB) were determined to be 222, 833, and 233 mg/g, respectively. The adsorption capacities of the AC for AO8, MB, and RB were determined to be 141, 313, and 185 mg/ g, respectively. The OMC demonstrated to be an excellent adsorbent for the removal of MB from wastewater.

Description

Keywords

SBA-15, Ordered mesoporous carbon, Chemical vapor deposition, Dye adsorption, Adsorption isotherms

Citation

Boke, N. et al. (2013). Synthesis of an ordered mesoporous carbon with graphitic characteristics and its application for dye adsorption. Journal of Porous Materials, 20: 1153 – 1161.