Probing beyond-Horndeski gravity on ultra-large scales

dc.contributor.authorMoloi, Teboho
dc.contributor.authorDuniya, Didam
dc.contributor.authorClarkson, Chris
dc.date.accessioned2021-02-15T09:52:11Z
dc.date.available2021-02-15T09:52:11Z
dc.date.issued2020
dc.description.abstractThe beyond-Horndeski gravity has recently been reformulated in the dark energy paradigm — which has been dubbed, Unified Dark Energy (UDE). The evolution equations for the given UDE appear to correspond to a non-conservative dark energy scenario, in which the total energy-momentum tensor is not conserved. We investigate both the background cosmology and, the large-scale imprint of the UDE by probing the angular power spectrum of galaxy number counts, on ultra-large scales; taking care to include the full relativistic corrections in the observed overdensity. The background evolution shows that only an effective mass smaller than the Planck mass is needed in the early universe in order for predictions in the given theory to match current observational constraints. We found that the effective mass-evolution-rate parameter, which drives the evolution of the UDE, acts to enhance the observed power spectrum and, hence, relativistic effects (on ultra-large scales) by enlarging the UDE sound horizon. Conversely, both the (beyond) Horndeski parameter and the kineticity act to diminish the observed power spectrum, by decreasing the UDE sound horizon. Our results show that, in a universe with UDE, a multi-tracer analysis will be needed to detect the relativistic effects in the large-scale structure. In the light of a multi-tracer analysis, the various relativistic effects hold the potential to distinguish different gravity models. Moreover, while the Doppler effect will remain significant at all epochs and, thus can not be ignored, the integrated Sachs-Wolfe, the time-delay and the potential (difference) effects, respectively, will only become significant at epochs near z = 3 and beyond, and may be neglected at late epochs. In the same vein, the Doppler effect alone can serve as an effective cosmological probe for the large-scale structure or gravity models, in the angular power spectrum — at all z.en_US
dc.identifier.citationMoloi, T. et al. 2020. Probing beyond-Horndeski gravity on ultra-large scales. Journal of Cosmology and Astroparticle Physics. 2020(1):33en_US
dc.identifier.urihttp://doi.org/10.1088/1475-7516/2020/01/033
dc.identifier.urihttp://hdl.handle.net/10566/5927
dc.language.isoenen_US
dc.subjectdark energy theoryen_US
dc.subjectgalaxy clusteringen_US
dc.subjectmodified gravityen_US
dc.subjectpower spectrumen_US
dc.titleProbing beyond-Horndeski gravity on ultra-large scalesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Probing beyond-Horndeski gravity on.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: