Constraining the astrophysics and cosmology from 21 cm tomography using deep learning with the SKA
dc.contributor.author | Hassan, Sultan | |
dc.contributor.author | Andrianomena, Sambatra | |
dc.contributor.author | Doughty, Caitlin | |
dc.date.accessioned | 2021-02-08T12:17:10Z | |
dc.date.available | 2021-02-08T12:17:10Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Future Square Kilometre Array (SKA) surveys are expected to generate huge data sets of 21 cm maps on cosmological scales from the Epoch of Reionization. We assess the viability of exploiting machine learning techniques, namely, convolutional neural networks (CNNs), to simultaneously estimate the astrophysical and cosmological parameters from 21 cm maps from seminumerical simulations. We further convert the simulated 21 cm maps into SKA-like mock maps using the detailed SKA antennae distribution, thermal noise, and a recipe for foreground cleaning. We successfully design two CNN architectures (VGGNet-like and ResNet-like) that are both efficiently able to extract simultaneously three astrophysical parameters, namely the photon escape fraction (fesc), the ionizing emissivity power dependence on halo mass (Cion), and the ionizing emissivity redshift evolution index (Dion), and three cosmological parameters, namely the matter density parameter (Ωm), the dimensionless Hubble constant (h), and the matter fluctuation amplitude (σ8), from 21 cm maps at several redshifts. | en_US |
dc.identifier.citation | Hassan, . et al. (2020). Constraining the astrophysics and cosmology from 21 cm tomography using deep learning with the SKA. Monthly Notices of the Royal Astronomical Society, 494(4), 5761–5774 | en_US |
dc.identifier.issn | 1365-2966 | |
dc.identifier.uri | https://doi.org/10.1093/mnras/staa1151 | |
dc.identifier.uri | http://hdl.handle.net/10566/5862 | |
dc.language.iso | en | en_US |
dc.publisher | Oxford University Press | en_US |
dc.subject | Methods: statistical | en_US |
dc.subject | Galaxies: high-redshift | en_US |
dc.subject | Intergalactic medium | en_US |
dc.subject | Cosmological parameters | en_US |
dc.subject | Dark ages | en_US |
dc.subject | First stars | en_US |
dc.title | Constraining the astrophysics and cosmology from 21 cm tomography using deep learning with the SKA | en_US |
dc.type | Article | en_US |