Constraining the astrophysics and cosmology from 21 cm tomography using deep learning with the SKA

dc.contributor.authorHassan, Sultan
dc.contributor.authorAndrianomena, Sambatra
dc.contributor.authorDoughty, Caitlin
dc.date.accessioned2021-02-08T12:17:10Z
dc.date.available2021-02-08T12:17:10Z
dc.date.issued2020
dc.description.abstractFuture Square Kilometre Array (SKA) surveys are expected to generate huge data sets of 21 cm maps on cosmological scales from the Epoch of Reionization. We assess the viability of exploiting machine learning techniques, namely, convolutional neural networks (CNNs), to simultaneously estimate the astrophysical and cosmological parameters from 21 cm maps from seminumerical simulations. We further convert the simulated 21 cm maps into SKA-like mock maps using the detailed SKA antennae distribution, thermal noise, and a recipe for foreground cleaning. We successfully design two CNN architectures (VGGNet-like and ResNet-like) that are both efficiently able to extract simultaneously three astrophysical parameters, namely the photon escape fraction (fesc), the ionizing emissivity power dependence on halo mass (Cion), and the ionizing emissivity redshift evolution index (Dion), and three cosmological parameters, namely the matter density parameter (Ωm), the dimensionless Hubble constant (h), and the matter fluctuation amplitude (σ8), from 21 cm maps at several redshifts.en_US
dc.identifier.citationHassan, . et al. (2020). Constraining the astrophysics and cosmology from 21 cm tomography using deep learning with the SKA. Monthly Notices of the Royal Astronomical Society, 494(4), 5761–5774en_US
dc.identifier.issn1365-2966
dc.identifier.urihttps://doi.org/10.1093/mnras/staa1151
dc.identifier.urihttp://hdl.handle.net/10566/5862
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.subjectMethods: statisticalen_US
dc.subjectGalaxies: high-redshiften_US
dc.subjectIntergalactic mediumen_US
dc.subjectCosmological parametersen_US
dc.subjectDark agesen_US
dc.subjectFirst starsen_US
dc.titleConstraining the astrophysics and cosmology from 21 cm tomography using deep learning with the SKAen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
staa1151.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: