Coastal marine heatwaves: Understanding extreme forces
Loading...
Date
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Western Cape
Abstract
Seawater temperature from regional to global scale is central to many measures of biodi-
versity and continues to aid our understanding of the evolution and ecology of biolog-
ical assemblages. Therefore, a clear understanding of the relationship between marine
biodiversity and thermal structures is critical for effective conservation planning. In the an-
thropocene, an epoch characterised by anthropogenic forcing on the climate system, future
patterns in biodiversity and ecological functioning may be estimated from projected climate
scenarios however; absent from many of these scenarios is the inclusion of extreme thermal
events, known as marine heatwaves (MHWs). There is also a conspicuous absence in knowl-
edge of the drivers for all but the most notorious of these events.
Before the drivers of MHWs along the coast of South Africa could be determined, it was first
necessary to validate the 129 in situ coastal seawater temperature time series that could be
used to this end. In doing so it was found that time series created with older (longer), lower
precision (0.5 Degrees Celsius) instruments were more useful than newer (shorter) time series produced
with high precision (0.001 Degrees Celsius) instruments. With the in situ data validated, a history of the
occurrence of MHWs along the coastline (nearshore) was created and compared against
MHWs detected by remotely sensed data (offshore). This comparison showed that the
forcing of offshore temperatures onto the nearshore was much lower than anticipated,
with the rates of co-occurrence for events between the datasets along the coast ranging
from 0.2 to 0.5. To accommodate this lack of consistency between datasets, a much larger
mesoscale area was then taken around southern Africa when attempting to determine
potential mesoscale drivers of MHWs along the coast. Using a self organising-map (SOM), it
was possible to organise the synoptic scale oceanographic and atmospheric states during
coastal MHWs into discernible groupings. It was found that the most common synoptic
oceanographic pattern during coastal MHWs was Agulhas Leakage, and the most common
atmospheric pattern was anomalously warmoverland air temperatures.With these patterns
known it is now necessary to calculate how often they occur when no MHW has been
detected. This work may then allow for the development of predictive capabilities that could help mitigate the damage caused by MHWs.
Description
Philosophiae Doctor - PhD (Biodiversity and Conservation Biology)
Keywords
Marine heatwaves, Code:R, Coastal, Atmosphere, Ocean, In situ data, Remotely-sensed data, Reanalysis data, Climate change, Machine learning