Mufasa: The assembly of the red sequence

Loading...
Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press

Abstract

We examine the growth and evolution of quenched galaxies in the Mufasa cosmo- logical hydrodynamic simulations that include an evolving halo mass-based quench- ing prescription, with galaxy colours computed accounting for line-of-sight extinc- tion to individual star particles. Mufasa reproduces the observed present-day red sequence quite well, including its slope, amplitude, and scatter. In Mufasa, the red sequence slope is driven entirely by the steep stellar mass{stellar metallicity relation, which independently agrees with observations. High-mass star-forming galaxies blend smoothly onto the red sequence, indicating the lack of a well-de ned green valley at M & 1010:5M . The most massive galaxies quench the earliest and then grow very little in mass via dry merging; they attain their high masses at earlier epochs when cold in ows more e ectively penetrate hot halos. To higher redshifts, the red sequence becomes increasingly contaminated with massive dusty star-forming galaxies; UVJ selection subtly but e ectively separates these populations. We then examine the evo- lution of the mass functions of central and satellite galaxies split into passive and star-forming via UVJ. Massive quenched systems show good agreement with obser- vations out to z 2, despite not including a rapid early quenching mode associated with mergers. However, low-mass quenched galaxies are far too numerous at z . 1 in Mufasa, indicating that Mufasa strongly over-quenches satellites. A challenge for hydrodynamic simulations is to devise a quenching model that produces enough early massive quenched galaxies and keeps them quenched to z = 0, while not being so strong as to over-quench satellites; Mufasa only succeeds at the former.

Description

Keywords

Galaxies, Formation, Evolution, N-body simulations

Citation

Davé, R. et al. (2017). Mufasa: The assembly of the red sequence. Monthly Notices of the Royal Astronomical Society.