Oxidation of benzoin catalyzed by oxovanadium (IV) schiff base complexes
Loading...
Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
Chemistry Central
Abstract
BACKGROUND: The oxidative transformation of benzoin to benzil has been accomplished by the use of a wide
variety of reagents or catalysts and different reaction procedures. The conventional oxidizing agents yielded mainly
benzaldehyde or/and benzoic acid and only a trace amount of benzil. The limits of practical utilization of these
reagents involves the use of stoichiometric amounts of corrosive acids or toxic metallic reagents, which in turn
produce undesirable waste materials and required high reaction temperatures.
In recent years, vanadium complexes have attracted much attention for their potential utility as catalysts for various
types of reactions.
RESULTS: Active and selective catalytic systems of new unsymmetrical oxovanadium(IV) Schiff base complexes for
the oxidation of benzoin is reported. The Schiff base ligands are derived between 2-aminoethanol and 2-hydroxy-1-
naphthaldehyde (H2L1) or 3-ethoxy salicylaldehyde (H2L3); and 2-aminophenol and 3-ethoxysalicylaldehyde (H2L2) or
2-hydroxy-1-naphthaldehyde (H2L4). The unsymmetrical Schiff bases behave as tridentate dibasic ONO donor
ligands. Reaction of these Schiff base ligands with oxovanadyl sulphate afforded the mononuclear oxovanadium(IV)
complexes (VIVOLx.H2O), which are characterized by various physico-chemical techniques.
The catalytic oxidation activities of these complexes for benzoin were evaluated using H2O2 as an oxidant. The best
reaction conditions are obtained by considering the effect of solvent, reaction time and temperature. Under the
optimized reaction conditions, VOL4 catalyst showed high conversion (>99%) with excellent selectivity to benzil
(~100%) in a shorter reaction time compared to the other catalysts considered.
CONCLUSION: Four tridentate ONO type Schiff base ligands were synthesized. Complexation of these ligands with
vanadyl(IV) sulphate leads to the formation of new oxovanadium(IV) complexes of type VIVOL.H2O.
Elemental analyses and spectral data of the free ligands and their oxovanadium(IV) complexes were found to be in
good agreement with their structures, indicating high purity of all the compounds.
Oxovanadium complexes were screened for the oxidation of benzoin to benzil using H2O2 as oxidant. The effect of
time, solvent and temperature were optimized to obtain maximum yield. The catalytic activity results demonstrate
that these catalytic systems are both highly active and selective for the oxidation of benzoin under mild reaction
conditions.
Description
Keywords
Tridentate ONO Schiff base ligands, Oxovanadium(IV) complexes, Benzoin oxidation, Benzil
Citation
Alsalim, T. A. (2013). Oxidation of benzoin catalyzed by oxovanadium (IV) schiff base complexes. Chemistry Central Journal, 7(3)