Using sparse gaussian processes for predicting robust inertial confinement fusion implosion yields

dc.contributor.authorJarvis, Matt
dc.contributor.authorHatfield, Peter
dc.contributor.authorRose, Steven
dc.date.accessioned2021-02-17T10:19:36Z
dc.date.available2021-02-17T10:19:36Z
dc.date.issued2019
dc.description.abstractHere we present the application of an advanced Sparse Gaussian Process based machine learning algorithm to the challenge of predicting the yields of inertial confinement fusion (ICF) experiments. The algorithm is used to investigate the parameter space of an extremely robust ICF design for the National Ignition Facility, the ‘Simplest Design’; deuteriumtritium gas in a plastic ablator with a Gaussian, Planckian drive. In particular we show that i) GPz has the potential to decompose uncertainty on predictions into uncertainty from lack of data and shot-to-shot variation, ii) permits the incorporation of sciencegoal specific cost-sensitive learning e.g. focussing on the high-yield parts of parameter space and iii) is very fast and effective in high dimensions.en_US
dc.identifier.citationJarvis, M. et al. (2019). Using sparse gaussian processes for predicting robust inertial confinement fusion implosion yields. Nature, 565(7741), 581–586en_US
dc.identifier.uri10.1109/TPS.2019.2944416
dc.identifier.urihttp://hdl.handle.net/10566/5944
dc.language.isoenen_US
dc.publisherarXiven_US
dc.subjectSparse gaussianen_US
dc.subjectInertial confinement fusionen_US
dc.subjectNational ignition facilityen_US
dc.subjectThermal radiationen_US
dc.titleUsing sparse gaussian processes for predicting robust inertial confinement fusion implosion yieldsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1910.08410.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: