Automorphism groups of graph covers and uniform subset graphs
dc.contributor.author | Mumba, Nephtale | |
dc.contributor.author | Mwambene, Eric | |
dc.date.accessioned | 2023-02-06T08:31:37Z | |
dc.date.available | 2023-02-06T08:31:37Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Hofmeister considered the automorphism groups of antipodal graphs through the exploration of graph covers. In this note weextend the exploration of automorphism groups of distance preserving graph covers. We apply the technique of graph covers todetermine the automorphism groups of uniform subset graphsΓ(2k,k,k−1) andΓ(2k,k,1).The determination of automorphismgroups answers a conjecture posed by Mark Ramras and Elizabeth Donovan. They conjectured that Aut(Γ(2k,k,k−1))∼=S2k×<T>,whereTis the complementation mapX↦→T(X)=Xc={1,2,...,2k}\X,andXis ak-subset ofΩ={1,2,...,2k}. | en_US |
dc.identifier.citation | Mumba, N., & Mwambene, E. (2018). Automorphism groups of graph covers and uniform subset graphs. AKCE International Journal of Graphs and Combinatorics, 15(1), 27-30. https://doi.org/10.1016/j.akcej.2018.01.016 | en_US |
dc.identifier.issn | 2543-3474 | |
dc.identifier.uri | https://doi.org/10.1016/j.akcej.2018.01.016 | |
dc.identifier.uri | http://hdl.handle.net/10566/8353 | |
dc.language.iso | en | en_US |
dc.publisher | Taylor and Francis Group | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Engineering | en_US |
dc.subject | Applied Mathematics | en_US |
dc.subject | Physics | en_US |
dc.title | Automorphism groups of graph covers and uniform subset graphs | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- mumba_automorphism groups of graph covers_2018.pdf
- Size:
- 624.59 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: