Synthesis, characterization and anticancer effects of quantum dots in neuroblastoma and glioblastoma cell lines

Loading...
Thumbnail Image

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

University of the Western Cape

Abstract

Introduction: Nanoparticles (NPs) are gaining increased popularity for cancer treatment, especially the multifunctional nanoparticles like Quantum dots (QDs) which have a wide range of applications in nanotheranostics, cell imaging and targeted drug delivery to cancerous tissue. QDs comprise of very tiny crystals of a semiconductor material (diameter: 2-10 nm) capable of producing bright, intensive and size-tuneable near-infrared fluorescence emissions. In particular, 3-mercaptopropionic acid -capped Cadmium Telluride Quantum Dots with a zinc sulphide shell (MPA-capped CdTe/ZnS QDs), are known to be very stable, highly photoluminescent, less toxic with long-lasting “fluorophore” effects, thus making them the preferred QDs for this study. Aims: To synthesize and characterize biocompatible MPA-capped CdTe/ZnS QDs to determine size range, polydispersity index (PdI), zeta (ζ) potential, photoluminescence (PL) spectra, stability in various milieus as well as to evaluate the effects of the synthesized QDs on the viability and morphology of neuroblastoma (NB) and glioblastoma (GB) cell lines using the WST-1 cell viability assay, imaging and cell cycle analysis. Materials and methods: MPA-capped CdTe/ZnS QDs were synthesized and analysed with the Zetasizer to determine ζ-potential, hydrodynamic (hd) size and PdI, while high resolutiontransmission electron microscopy (HR-TEM) was used to validate the hd size and elemental composition using energy dispersive X-ray (EDX) spectra. Pl absorption and emission spectra were obtained with a fluorometer and stability studies were done using UV-Vis spectroscopy, permitting further biological evaluation. A concentration range of 5-20μg/ml QDs was exposed to U87 and SH-SY5Y cancer cell lines to determine biological effects at different time points, using the WST-1 assay. Confocal fluorescence microscopy was used to establish uptake and cellular localization of the QDs, cell morphology was visualized with an inverted microscope while cell cycle distribution analysis was done using the C6 flow cytometer.

Description

>Magister Scientiae - MSc

Keywords

Formulation, Functionalization, Stability, Viability, Nanoparticles

Citation