Binary codes from m-ary n-cubes Q(n) (m)
dc.contributor.author | Key, Jennifer D. | |
dc.contributor.author | Rodrigues, Bernardo G. | |
dc.date.accessioned | 2023-05-31T10:19:28Z | |
dc.date.available | 2023-05-31T10:19:28Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We examine the binary codes from adjacency matrices of the graph with vertices the nodes of the m-ary n-cube Qmn and with adjacency de ned by the Lee metric. For n = 2 and m odd, we obtain the parameters of the code and its dual, and show the codes to be LCD. We also nd s-PD-sets of size s + 1 for s < m1 2 for the dual codes, i.e. [m2; 2m 1;m]2 codes, when n = 2 and m 5 is odd. | en_US |
dc.identifier.citation | Key, J. D., & Rodrigues, B. G. (2021). Binary codes from m-ary n-cubes Q(n) (m). Advances in Mathematics of Communications, 15(3), 507-524. 10.3934/amc.2020079 | en_US |
dc.identifier.issn | 1930-5338 | |
dc.identifier.uri | 10.3934/amc.2020079 | |
dc.identifier.uri | http://hdl.handle.net/10566/8974 | |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Mathematical Sciences | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Binary codes | en_US |
dc.subject | Permutation decoding | en_US |
dc.subject | Lee graph | en_US |
dc.title | Binary codes from m-ary n-cubes Q(n) (m) | en_US |
dc.type | Article | en_US |