Correction: Layer-structured FeCo bihydroxide as an ultra-stable bifunctional electrocatalyst for water splitting at high current densities

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Royal society of chemistry

Abstract

The development of stable bifunctional electrodes capable of operation at high current densities is a key requirement for large scale hydrogen generation by water electrolysis. Herein, amorphous FeCo hydroxides are controllably electroplated onto nickel mesh to produce binder-free bifunctional FeCo-LDH/NM electrodes for water splitting. In an alkaline electrolyte, the hydrogen evolution reaction on FeCo-LDH/NM requires an overpotential of only 311 mV to deliver a current density of 1000 mA cm−2, and the same current density is achieved in the oxygen evolution reaction at 300 mV. Notably, in a real electrolyzer setup, a current density of 1000 mA cm−2 is realized at 1.82 V and remains unchanged for 150 h. The study demonstrates promising bifunctional electrocatalytic properties of the FeCo-LDH/NM electrode material making it a suitable candidate for practical applications in large-scale water electrolysis systems.

Description

Keywords

Water electrolysis systems, Hydrogen generation, Water splitting, Alkaline electrolyte

Citation