Selection of diazotrophic bacterial communities in biological sand filter mesocosms used for the treatment of phenolic-laden wastewater

Abstract

Agri effluents such as winery or olive mill waste-waters are characterized by high phenolic concentrations. These compounds are highly toxic and generally refractory to biodegradation. Biological sand filters (BSFs) represent inexpensive, environmentally friendly, and sustainable wastewater treatment systems which rely vastly on microbial catabolic processes. Using denaturing gradient gel electrophoresis and terminal-restriction fragment length polymorphism, this study aimed to assess the impact of increasing concentrations of synthetic phenolic-rich wastewater, ranging from 96 mg L−1 gallic acid and138 mg L−1 vanillin (i.e., a total chemical oxygen demand (COD) of 234 mg L−1) to 2,400mg L−1 gallic acid and 3,442 mg L−1 vanillin (5,842 mg COD L−1), on bacterialcommunities and the specific functional diazotrophic community from BSF mesocosms. This amendment procedure instigated efficient BSF phenolic removal, significant modifications of the bacterial communities, and notably led to the selection of a phenolic-resistant and less diverse diazotrophic community. This suggests that bioavailable N is crucial in the functioning of biological treatment processes involving microbial communities, and thus that functional alterations in the bacterial communities in BSFs ensure provision of sufficient bioavailable nitrogen for the degradation of wastewater with a high C/N ratio.

Description

Keywords

Diazotrophic, Bacterial communities, Agri effluents, Biological sand filters (BSFs), Microbial catabolic processes

Citation

Ramond, J-B. et al. (2013). Selection of diazotropic bacterial communities in biological sand filter mesocosms used for the treatment of phenolic-laden wastewater. Microbial Ecology, 66: 563 – 570