Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters

dc.contributor.authorD'Amato, María Eugenia
dc.contributor.authorDelehelle, Franklin
dc.contributor.authorBouakaze, Caroline
dc.date.accessioned2021-01-06T07:44:47Z
dc.date.available2021-01-06T07:44:47Z
dc.date.issued2020
dc.description.abstractWe developed a new mutationally well-balanced 32 Y-STR multiplex (CombYplex) together with a machine learning (ML) program PredYMaLe to assess the impact of STR mutability on haplogourp prediction, while respecting forensic community criteria (high DC/HD). We designed CombYplex around two sub-panels M1 and M2 characterized by average and high-mutation STR panels. Using these two sub-panels, we tested how our program PredYmale reacts to mutability when considering basal branches and, moving down, terminal branches. We tested first the discrimination capacity of CombYplex on 996 human samples using various forensic and statistical parameters and showed that its resolution is sufficient to separate haplogroup classes. In parallel, PredYMaLe was designed and used to test whether a ML approach can predict haplogroup classes from Y-STR profiles. Applied to our kit, SVM and Random Forest classifiers perform very well (average 97 %), better than Neural Network (average 91 %) and Bayesian methods (< 90 %).en_US
dc.identifier.citationD'Amato, M. E. et al. (2020). Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters. Forensic Science International: Genetics ,48,102342en_US
dc.identifier.issn1872-4973
dc.identifier.uri10.1016/j.fsigen.2020.102342
dc.identifier.urihttp://hdl.handle.net/10566/5571
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectAssignation accuracy and haplogroup prediction (Hg prediction)en_US
dc.subjectIncremental mutation ratesen_US
dc.subjectMachine learningen_US
dc.subjectY-STRen_US
dc.subjectHuman experimenten_US
dc.titlePredicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parametersen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1872497320301150-main.pdf
Size:
6.6 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: