Feature guided training and rotational standardization for the morphological classification of radio galaxies

dc.contributor.authorBrand, Kevin
dc.contributor.authorGrobler, Trienko L.
dc.contributor.authorPrescott, Matthew
dc.date.accessioned2023-05-30T07:27:11Z
dc.date.available2023-05-30T07:27:11Z
dc.date.issued2023
dc.description.abstractState-of-the-art radio observatories produce large amounts of data which can be used to study the properties of radio galaxies. However, with this rapid increase in data volume, it has become unrealistic to manually process all of the incoming data, which in turn led to the development of automated approaches for data processing tasks, such as morphological classification. Deep learning plays a crucial role in this automation process and it has been shown that convolutional neural networks (CNNs) can deliver good performance in the morphological classification of radio galaxies. This paper investigates two adaptations to the application of these CNNs for radio galaxy classification. The first adaptation consists of using principal component analysis (PCA) during pre-processing to align the galaxies’ principal components with the axes of the coordinate system, which will normalize the orientation of the galaxies. This adaptation led to a significant improvement in the classification accuracy of the CNNs and decreased the average time required to train the models. The second adaptation consists of guiding the CNN to look for specific features within the samples in an attempt to utilize domain knowledge to improve the training process. It was found that this adaptation generally leads to a stabler training process and in certain instances reduced overfitting within the network, as well as the number of epochs required for training.en_US
dc.identifier.citationBrand, K. et al. (2023). Feature guided training and rotational standardization for the morphological classification of radio galaxies. Monthly Notices of the Royal Astronomical Society, 522(1), 292-311. https://doi.org/10.1093/mnras/stad989en_US
dc.identifier.issn1365-2966
dc.identifier.urihttps://doi.org/10.1093/mnras/stad989
dc.identifier.urihttp://hdl.handle.net/10566/8955
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.subjectPhysicsen_US
dc.subjectAstronomyen_US
dc.subjectGalaxiesen_US
dc.subjectStatistics studiesen_US
dc.subjectImage processingen_US
dc.titleFeature guided training and rotational standardization for the morphological classification of radio galaxiesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
brand_feature guided training_2023.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: