Quijote-png: Quasi-maximum likelihood estimation of primordial non-gaussianity in the nonlinear dark matter density field

dc.contributor.authorJung, Gabriel
dc.contributor.authorKaragiannis, Dionysios
dc.contributor.authorLiguori, Michele
dc.date.accessioned2023-04-19T13:27:52Z
dc.date.available2023-04-19T13:27:52Z
dc.date.issued2022
dc.description.abstractFuture large-scale structure surveys are expected to improve current bounds on primordial non-Gaussianity (PNG), with a significant impact on our understanding of early universe physics. The level of such improvements will however strongly depend on the extent to which late-time nonlinearities erase the PNG signal on small scales. In this work, we show how much primordial information remains in the bispectrum of the nonlinear dark matter density field by implementing a new, simulation-based methodology for joint estimation of PNG amplitudes ( fNL) and standard Lambda cold dark matter parameters. The estimator is based on optimally compressed statistics, which, for a given input density field, combine power spectrum and modal bispectrum measurements, and numerically evaluate their covariance and their response to changes in cosmological parameters. In this first analysis, we focus on the matter density field, and we train and validate the estimator using a large suite of N-body simulations (QUIJOTE-PNG), including different types of PNG (local, equilateral, orthogonal).en_US
dc.identifier.citationJung, G. et al. (2022). Quijote-png: Quasi-maximum likelihood estimation of primordial non-gaussianity in the nonlinear dark matter density field. Astrophysical Journal, 940 71. 10.3847/1538-4357/ac9837en_US
dc.identifier.issn1538-4357
dc.identifier.urihttps://doi.org/10.3847/1538-4357/ac9837
dc.identifier.urihttp://hdl.handle.net/10566/8838
dc.language.isoenen_US
dc.publisherAmerican Astronomical Societyen_US
dc.subjectNon-gaussianityen_US
dc.subjectAstronomyen_US
dc.subjectPhysicsen_US
dc.subjectCosmologyen_US
dc.subjectAstrophysicsen_US
dc.titleQuijote-png: Quasi-maximum likelihood estimation of primordial non-gaussianity in the nonlinear dark matter density fielden_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jung_quijote-png_2022.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: