Synthesis and characterizations of nanostructured MnO2 electrodes for supercapacitors applications

dc.contributor.advisorJi, S.
dc.contributor.advisorKey, David
dc.contributor.advisorMohamed, Rushanah
dc.contributor.authorMothoa, Sello Simon
dc.contributor.otherDept. of Chemistry
dc.contributor.otherFaculty of Science
dc.date.accessioned2014-01-17T09:37:44Z
dc.date.accessioned2024-05-09T10:49:56Z
dc.date.available2011/06/10 06:59
dc.date.available2011/06/10
dc.date.available2014-01-17T09:37:44Z
dc.date.available2024-05-09T10:49:56Z
dc.date.issued2010
dc.descriptionMagister Scientiae - MScen_US
dc.description.abstractThe objective of this research was to develop highly efficient and yet effective MnO2 electrode materials for supercapacitors applications. Most attention had focussed on MnO2 as a candidate for pseudo-capacitor, due to the low cost of the raw material and the fact that manganese is more environmental friendly than any other transition metal oxide system. The surface area and pore distribution of MnO2 can be controlled by adjusting the reaction time. The MnO2 synthesised under optimum conditions display high capacitance, and exhibit good cycle profile. This work investigates the ways in which different morphological structures and pore sizes can affect the effective capacitance. Various -MnO2 were successfully synthesised under low temperature conditions of 70 oC and hydrothermal conditions at 120 oC. The reaction time was varied from 1 to 6 hours to optimise the conditions. KMnO4 was reduced by MnCl.H2O under low temperature, whereas MnSO4.4H2O, (NH4)2S2O8 and (NH4)2SO4 were co-precipitated under hydrothermal conditions in a taflon autoclave to synthesise various -MnO2 nano-structures.en_US
dc.description.countrySouth Africa
dc.identifier.urihttps://hdl.handle.net/10566/14435
dc.language.isoenen_US
dc.publisherUniversity of the Western Capeen_US
dc.rights.holderUniversity of the Western Capeen_US
dc.subjectNanotechnologyen_US
dc.subjectNanostructured materialsen_US
dc.subjectElectrodesen_US
dc.titleSynthesis and characterizations of nanostructured MnO2 electrodes for supercapacitors applicationsen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mothoa_MSC_2010.pdf
Size:
6.91 MB
Format:
Adobe Portable Document Format