Application of enviromental and hydrochemical analysis to characterize flow dynamics in the Sakumo Wetland, Ghana

Loading...
Thumbnail Image

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

University of the Western Cape

Abstract

This research focused on understanding the current hydrogeology of the Sakumo wetland by developing a conceptual flow model and simulating the groundwater flow system. The purpose of the model is to assist in understanding the groundwater flow system and quantify the water fluxes contributing to the wetland water storage. The research adapted quantitative, qualitative and mixed analysis to characterize the water flow in the basin. This involved the use of numerical modelling techniques to determine the zones of groundwater discharge to the wetland and zones of wetland water released for groundwater recharge. Field investigation were carried out to estimate the hydraulic parameters and sample rainwater, wetland water and groundwater. The Sakumo wetland aquifer is situated in the quaternary unit consisting of sandy clay and weathered quartzite. The average annual precipitation in the study area from 1970 to 2016 was estimated at 760 mm/yr. Groundwater recharge rate was estimated as 5% of the mean annual rainfall which provided inputs into the numerical groundwater flow model. Evaporation from the wetland and evapotranspiration from the basin estimated using the Hargreaves and Samani method were 1341 mm/a and 546 mm/a, respectively. The hydrogeologic conceptual model was developed from the geology, borehole lithology, groundwater and wetland water levels.

Description

Philosophiae Doctor - PhD (Earth Science)

Keywords

Hydrogeology, hydrogeochemistry, conceptual model, numerical model, water balance, groundwater-wetland interactions, major ions, multivariate statistics

Citation