Foreground modelling via Gaussian process regression: an application to HERA data

dc.contributor.authorGhosh, Abhik
dc.contributor.authorMertens, Florent
dc.contributor.authorBernardi, Gianni
dc.date.accessioned2021-02-15T08:34:00Z
dc.date.available2021-02-15T08:34:00Z
dc.date.issued2020
dc.description.abstractThe key challenge in the observation of the redshifted 21-cm signal from cosmic reionization is its separation from the much brighter foreground emission. Such separation relies on the different spectral properties of the two components, although, in real life, the foreground intrinsic spectrum is often corrupted by the instrumental response, inducing systematic effects that can further jeopardize the measurement of the 21-cm signal. In this paper, we use Gaussian Process Regression to model both foreground emission and instrumental systematics in ∼2 h of data from the Hydrogen Epoch of Reionization Array.en_US
dc.identifier.citationGhosh, A. et al. (2020). Foreground modelling via Gaussian process regression: an application to HERA data. Monthly Notices of the Royal Astronomical Society, 495(3), 2813–2826en_US
dc.identifier.issn1365-2966
dc.identifier.urihttps://doi.org/10.1093/mnras/staa1331
dc.identifier.urihttp://hdl.handle.net/10566/5919
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.subjectInstrumentation: interferometersen_US
dc.subjectMethods: statisticalen_US
dc.subjectDark agesen_US
dc.subjectReionizationen_US
dc.subjectFirst starsen_US
dc.titleForeground modelling via Gaussian process regression: an application to HERA dataen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
staa1331.pdf
Size:
15.63 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: