Complex sequential data analysis: A systematic literature review of existing algorithms

dc.contributor.authorDandajena, Kudakwashe
dc.contributor.authorVenter, Isabella M.
dc.contributor.authorGhaziasgar, Mehrdad
dc.date.accessioned2020-12-10T07:55:36Z
dc.date.available2020-12-10T07:55:36Z
dc.date.issued2020
dc.description.abstractThis paper provides a review of past approaches to the use of deep-learning frameworks for the analysis of discrete irregularpatterned complex sequential datasets. A typical example of such a dataset is financial data where specific events trigger sudden irregular changes in the sequence of the data. Traditional deep-learning methods perform poorly or even fail when trying to analyse these datasets. The results of a systematic literature review reveal the dominance of frameworks based on recurrent neural networks.en_US
dc.identifier.citationDandajena, K . et al. (2020).Complex sequential data analysis: A systematic literature review of existing algorithms. ACM international conference proceeding series, Cape Town, 44-50en_US
dc.identifier.urihttps://doi.org/10.1145/3410886.3410899
dc.identifier.urihttp://hdl.handle.net/10566/5486
dc.language.isoenen_US
dc.publisherSAICSITen_US
dc.subjectIrregular patternsen_US
dc.subjectTime series forecastingen_US
dc.subjectParameteren_US
dc.subjectVolatile financial predictionen_US
dc.subjectState-of-the-arten_US
dc.titleComplex sequential data analysis: A systematic literature review of existing algorithmsen_US
dc.typePresentationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2007.11572.pdf
Size:
784.65 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: