Physiological and cellular characterization of a plant natriuretic peptide

Loading...
Thumbnail Image

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

University of the Western Cape

Abstract

Plants in the field are exposed to multiple stresses and their response to these various stresses determines their capacity to survive. Plants can use multiple signaling pathways and signals to mediate their response; for example, at least four different signal pathways have been identified for water-deficit stress (Shinozaki and Yamaguchi-Shinozaki, 1997; Xiong et al., 2002). Different forms of stress may activate or utilize the same components, including proteins and other signaling molecules. Signaling molecules such as jasmonic acid (JA) are involved in multiple stress response and development in plants (Creelman and Mullet, 1995, 1997; Turner et al., 2002). However it is the specific combination of various components of the signaling network coupled with spatial and temporal factors that allows the plant to mount a directed response to any given stress factors. Systemic defense responses thus provide an attractive model for the study of cell-to-to cell signal transduction pathways that operates over long distances (Lucas and Lee, 2004). Cellular and physiological evidence suggest the presence of a novel class of systemic mobile plant molecule that is recognized by antibodies against vertebrate atrial natriuretic peptides (ANPs). It has been demonstrated that a recombinant Arabidopsis thaliana natriuretic peptide analogue (AtPNP-A) molecule can induce osmoticumdependent water uptake into protoplast at nanomolar concentrations thus affecting cell volume and hence plant growth. In this study we confirm that active recombinant protein causes swelling in Arabidopsis mesophyll cell protoplasts (MCPs).

Description

Magister Scientiae - MSc

Keywords

Plant molecular biology, Plant cellular signal transduction

Citation