Development of a bismuth-silver nanofilm sensor for the determination of platinum group metals in environmental samples.

Loading...
Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

University of the Western Cape

Abstract

Nowadays, the pollution of surface waters with chemical contaminants is one of the most crucial environmental problems. These chemical contaminants enter rivers and streams resulting in tremendous amount of destruction, so the detection and monitoring of these chemical contaminants results in an ever-increasing demand. This thesis describes the search for a suitable method for the determination of platinum group metals (PGMs) in environmental samples due to the toxicity of mercury films and the limitations with methods other than electroanalytical methods. This study focuses on the development of a novel bismuth-silver bimetallic nanosensor for the determination of PGMs in roadside dust and soil samples. Firstly, individual silver, bismuth and novel bismuth-silver bimetallic nanoparticles were chemically synthesised. The synthesised nanoparticles was compared and characterised by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transformed infrared spectroscopy (FT-IR), Raman spectroscopy, and transmission electron microscopy (TEM) analysis to interrogate the electrochemical, optical, structural, and morphological properties of the nanomaterials. The individual silver, bismuth, and bismuth-silver bimetallic nanoparticles in the high resolution transmission electron microscopy results exhibited an average particle size of 10-30 nm. The electrochemical results obtained have shown that the bismuth-silver bimetallic nanoparticles exhibit good electro-catalytic activity that can be harnessed for sensor construction and related applications. The ultraviolet-visible spectroscopy, Fourier-transformed infrared spectroscopy, and Raman spectroscopy results confirmed the structural properties of the novel bismuth-silver bimetallic nanoparticles. In addition the transmission electron microscopy and selected area electron diffraction morphological characterisation confirmed the nanoscale nature of the bismuth-silver bimetallic nanoparticles. Secondly, a sensitive adsorptive stripping voltammetric procedure for palladium, platinum and rhodium determination was developed in the presence of dimethylglyoxime (DMG) as the chelating agent at a glassy carbon electrode coated with a bismuth-silver bimetallic nanofilm. The nanosensor further allowed the adsorptive stripping voltammetric detection of PGMs without oxygen removal in solution. In this study the factors that influence the stripping performance such as composition of supporting electrolyte, DMG concentration, deposition potential and time studies, and pH have been investigated and optimised. The bismuth-silver bimetallic nanosensor was used as the working electrode with 0.2 M acetate buffer (pH = 4.7) solution as the supporting electrolyte. The differential pulse adsorptive stripping peak current signal was linear from 0.2 to 1.0 ng/L range (60 s deposition), with limit of detections for Pd (0.19 ng/L), Pt (0.20 ng/L), Rh (0.22 ng/L), respectively. Good precision for the sensor application was also obtained with a reproducibility of 4.61% for Pd(II), 5.16% for Pt(II) and 5.27% for Rh(III), for three measurements. Investigations of the possible interferences from co-existing ions with PGMs were also done in this study. The results obtained for the study of interferences have shown that Ni(II) and Co(II) interfere with Pd(II), Pt(II) and Rh(III) at high concentrations. The interference studies of Cd(II), Pb(II), Cu(II) and Fe(III) showed that these metal ions only interfere with Pd(II) and Pt(II) at high concentrations, with no interferences observed for Rh(III). Phosphate and sulphate only interfere at high concentrations with Pt(II) and Rh(III) in the presence of DMG with 0.2 M acetate buffer (pH = 4.7) solution as the supporting electrolyte. Based on the experimental results, this bismuth-silver bimetallic nanosensor can be considered as an alternative to common mercury electrodes, carbon paste and bismuth film electrodes for electrochemical detection of PGMs in environmental samples. Thirdly, this study dealt with the development of a bismuth-silver bimetallic nanosensor for differential pulse adsorptive stripping voltammetry (DPAdSV) of PGMs in environmental samples. The nanosensor was fabricated by drop coating a thin bismuth-silver bimetallic film onto the active area of the SPCEs. Optimisation parameters such as pH, DMG concentration, deposition potential and deposition time, stability test and interferences were also studied. In 0.2 M acetate buffer (pH = 4.7) solution and DMG as the chelating agent, the reduction signal for PGMs ranged from 0.2 to 1.0 ng/L. The detection limit for Pd(II), Pt(II) and Rh(III) was found to be 0.07 ng/L, 0.06 ng/L and 0.2 ng/L, respectively. Good precision for the sensor application was also obtained with a reproducibility of 7.58% for Pd(II), 6.31% for Pt(II) and 5.37% for Rh(III), for three measurements. In the study of possible interferences, the results have shown that Ni(II), Co(II), Fe(III), Na+, SO42- and PO43- does not interfere with Pd(II) in the presence of DMG with sodium acetate buffer as the supporting electrolyte solution. These possible interference ions only interfere with Pt(II) and Rh(III) in the presence of DMG with 0.2 M acetate buffer (pH = 4.7) as the supporting electrolyte solution.

Description

Philosophiae Doctor - PhD

Keywords

Ultraviolet visible spectroscopy, Nanoparticles, Bimetallic nanosensor, Platinum group metals (PGMs)

Citation