Unsupervised machine learning for transient discovery in deeper, wider, faster light curves

dc.contributor.authorLochner, Michelle
dc.contributor.authorWebb, Sara
dc.contributor.authorMuthukrishna, Daniel
dc.date.accessioned2021-02-08T09:02:18Z
dc.date.available2021-02-08T09:02:18Z
dc.date.issued2020
dc.description.abstractIdentification of anomalous light curves within time-domain surveys is often challenging. In addition, with the growing number of wide-field surveys and the volume of data produced exceeding astronomers’ ability for manual evaluation, outlier and anomaly detection is becoming vital for transient science. We present an unsupervised method for transient discovery using a clustering technique and the ASTRONOMALY package. As proof of concept, we evaluate 85 553 min-cadenced light curves collected over two ∼1.5 h periods as part of the Deeper, Wider, Faster program, using two different telescope dithering strategies.en_US
dc.identifier.citationLochner, M. et al. (2020). Unsupervised machine learning for transient discovery in deeper, wider, faster light curves. Monthly Notices of the Royal Astronomical Society,498(3), 3077–3094,en_US
dc.identifier.issn1365-2966
dc.identifier.urihttps://doi.org/10.1093/mnras/staa2395
dc.identifier.urihttp://hdl.handle.net/10566/5849
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.subjectMethods: data analysisen_US
dc.subjectMethods: observationalen_US
dc.subjectTechniques: photometricen_US
dc.subjectUnsupervised machineen_US
dc.titleUnsupervised machine learning for transient discovery in deeper, wider, faster light curvesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
staa2395 (1).pdf
Size:
4.42 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: