Long short-term memory recurrent neural networks for signature verification

dc.contributor.advisorOmlin, C
dc.contributor.authorTiflin, C
dc.date.accessioned2023-06-12T11:29:17Z
dc.date.accessioned2024-10-30T14:00:36Z
dc.date.available2023-06-12T11:29:17Z
dc.date.available2024-10-30T14:00:36Z
dc.date.issued2003
dc.description>Magister Scientiae - MScen_US
dc.description.abstractHandwritten signature verification is defined as the classification process that strives to learn the manner in which an individual makes use of the muscular memory of their hands, fingers, and wrist to reproduce a signature. A handwritten signature is captured by a pen input device and sampled at a high frequency which results in time series with several hundred data points. A novel recurrent neural network architecture known as long short-term memory was designed for modeling such a long-time series. This research investigates the suitability of long short-term memory recurrent neural networks for the task of online signature verification. We design and experiment with various network architectures to determine if this model can be trained to discriminate between authentic and fraudulent signatures. We further determine whether the complexity of a signature impacts the performance level of the network when applied to fraudulent signatures. We also investigate the performance level of the network when varying the number of signature features.en_US
dc.identifier.urihttps://hdl.handle.net/10566/16905
dc.language.isoenen_US
dc.publisherUWCen_US
dc.subjectlong short-term memoryen_US
dc.subjectrecurrent neural networksen_US
dc.subjecttime series modellingen_US
dc.subjectsignature verificationen_US
dc.titleLong short-term memory recurrent neural networks for signature verificationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tiflin_m_nsc_2003.pdf
Size:
3.38 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: