South African National Bioinformatics Institute (SANBI)
Permanent URI for this community
News
How South Africa can stop HIV drug resistance in its tracks22 May, 2015
UWC team slashes cost of drug test11 June, 2015
UWC HIV drug resistance test innovation18 February 2016
Browse
Browsing by Subject "Aedes aegypti"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A comparative genomics approach towards classifying immunity-related proteins in the tsetse fly(2009) Mpondo, Feziwe; Hide, Winston; Christoffels, AlanTsetse flies (Glossina spp) are vectors of African trypanosome (Trypanosoma spp) parasites, causative agents of Human African trypanosomiasis (sleeping sickness) and Nagana in livestock. Research suggests that tsetse fly immunity factors are key determinants in the success and failure of infection and the maturation process of parasites. An analysis of tsetse fly immunity factors is limited by the paucity of genomic data for Glossina spp. Nevertheless, completely sequenced and assembled genomes of Drosophila melanogaster, Anopheles gambiae and Aedes aegypti provide an opportunity to characterize protein families in species such as Glossina by using a comparative genomics approach. In this study we characterize thioester-containing proteins (TEPs), a sub-family of immunity-related proteins, in Glossina by leveraging the EST data for G.morsitans and the genomic resources of D. melanogaster, A. gambiae as well as A.aegypti.A total of 17 TEPs corresponding to Drosophila (four TEPs), Anopheles (eleven TEPs) and Aedes aegypti (two TEPs) were collected from published data supplemented with Genbank searches. In the absence of genome data for G. morsitans, 124 000 G.morsitans ESTs were clustered and assembled into 18 413 transcripts (contigs and singletons). Five Glossina contigs (Gmcn1115, Gmcn1116, Gmcn2398, Gmcn2281 and Gmcn4297) were identified as putative TEPs by BLAST searches. Phylogenetic analyses were conducted to determine the relationship of collected TEP proteins.Gmcn1115 clustered with DmtepI and DmtepII while Gmcn2398 is placed in a separate branch, suggesting that it is specific to G. morsitans.The TEPs are highly conserved within D. melanogaster as reflected in the conservation of the thioester domain, while only two and one TEPs in A. gambiae and A. aegypti thioester domain show conservation of the thioester domain suggesting that these proteins are subjected to high levels of selection. Despite the absence of a sequenced genome for G. morsitans, at least two putative TEPs where identified from EST data.Item Identification and characterization of microRNAs and their putative target genes in Anopheles funestus s.s(2013) Ali, Mushal Allam Mohamed Alhaj; Christoffels, AlanThe discovery of microRNAs (miRNAs) is one of the most exciting scientific breakthroughs in the last decade. miRNAs are short RNA molecules that do not encode proteins but instead, regulate gene expression. Over the past several years, thousands of miRNAs have been identified in various insect genomes through cloning and sequencing, and even by computational prediction. However, information concerning possible roles of miRNAs in mosquitoes is limited. Within this context, we report here the first systematic analysis of these tiny RNAs and their target mRNAs in one of the principal African malaria vectors, Anopheles funestus s.s. Firstly, to extend the known repertoire of miRNAs expressed in this insect, the small RNAs from the four developmental stages (egg, larvae, pupae and the adult females), were sequenced using next generation sequencing technology. A total of 98 miRNAs were identified, which included 65 known Anopheles miRNAs, 25 miRNAs conserved in other insects and 8 novel miRNAs that had not been reported in any species. We further characterized new variants for miR-2 and miR-927 and stem-loop precursors for miR-286 and miR-2944. The analysis showed that many miRNAs have stage-specific expression, and co-transcribed and co-regulated during development. Secondly, for a better understanding of the molecular details of the miRNAs function, we identified the target genes for the Anopheles miRNAs using a novel approach that identifies overlap genes among three target prediction tools followed by filtering genes based on functional enrichment of GO terms and KEGG pathways. We found that most of the miRNAs are metabolic regulators. Moreover, the results suggest implication of some miRNAs not only in the development but also in insect-parasite interaction. Finally, we developed the InsecTar database (http://insectar.sanbi.ac.za) for miRNA targets in the three mosquito species; Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus, which incorporates prediction and the functional analysis of these target genes. The proposed database will undoubtedly assist to explore the roles of these regulatory molecules in insects. This type of analysis is a key step towards improving our understanding of the complexity and regulationmode of miRNAs in mosquitoes. Moreover, this study opens the door for exploration of miRNA in regulation of critical physiological functions specific to vector arthropods which may lead to novel approaches to combat mosquito-borne infectious diseases.