Research Articles (Biotechnology)
Permanent URI for this collection
Browse
Browsing by Subject "Acyldepsipeptides"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Acyldepsipeptide analogues: A future generation antibiotics for Tuberculosis treatment(MDPI, 2022) Cobongela, Sinazo Z. Z.; Makatini, Maya M.; Sibuyi, Nicole R. S.Acyldepsipeptides (ADEPs) are a new class of emerging antimicrobial peptides (AMPs), which are currently explored for treatment of pathogenic infections, including tuberculosis (TB). These cyclic hydrophobic peptides have a unique bacterial target to the conventional anti-TB drugs, and present a therapeutic window to overcome Mycobacterium Tuberculosis (M. tb) drug resistance. ADEPs exerts their antibacterial activity on M. tb strains through activation of the protein homeostatic regulatory protease, the caseinolytic protease (ClpP1P2). ClpP1P2 is normally regulated and activated by the ClpP-ATPases to degrade misfolded and toxic peptides and/or short proteins. ADEPs bind and dysregulate all the homeostatic capabilities of ClpP1P2 while inducing non-selective proteolysis. The uncontrolled proteolysis leads to M. tb cell death within the host.Item Design and synthesis of acyldepsipeptide-1 analogues: antibacterial activity and cytotoxicity screening(Arabian Journal of Chemistry, 2023) Sibuyi, Nicole R.S; Cobongela, Sinazo Z.Z; Makatini, Maya MAcyldepsipeptides (ADEPs) are receiving more attention as prospective antimicrobial agents due to their unique mode of action and chemical properties. However, their therapeutic potential is limited by their poor pharmacokinetic properties. Chemical modifications have been successful in improving the biocompatibility and bioavailability of ADEPs. In the current study, ADEP1 was modified by introducing a disulphide linkage, replacement of the octa-2,4,6-trienoic acid (OTEA) with either adamantane (Ada) or palmitic acid (Pal), and lastly, comparing the use of D versus L amino acids. The antibacterial effects of the ADEP1 analogues were investigated in Gram-positive and Gram-negative strains using agar well diffusion and microdilution assays. Cytotoxicity was evaluated in human embryonic kidney (HEK)-293 and colon cancer (Caco-2) cells by the MTS assay. Using solid phase peptide synthesis (SPPS), the percentage yield of the synthetic peptides was increased to > 37% with > 96% purity.